גרעין (תורת הקטגוריות)

בתורת הקטגוריות, גרעין הוא מושג כללי המכליל את מושג הגרעין האלגבראי - דהיינו גרעין של הומומורפיזם של חבורות, חוגים ומודולים.

באופן לא לגמרי פורמלי, גרעין של מורפיזם עבור אובייקטים כלשהם, הוא האובייקט "הכללי ביותר" עם מורפיזם מתאים מהצורה , כך ש-.

הגדרה

תהי קטגוריה, המכילה את מורפיזם האפס. יהיו אובייקטים ויהי מורפיזם.

הגרעין של הוא אובייקט שעבורו קיים מורפיזם שהוא המשווה של ושל מורפיזם האפס , וכן אוניברסלי ביחס לתכונה זו של קיום .

באופן מפורש, גרעין הוא אובייקט המקיים את שתי התכונות הבאות:

  • , כלומר הדיאגרמה הבאה קומוטטיבית:
  • בהינתן אובייקט עם מורפיזם כלשהו כך ש-, קיים מורפיזם יחיד כך ש . כלומר הדיאגרמה הבאה קומוטטיבית:

במקרים רבים, במיוחד באלגברה, מתייחסים לגרעין כאל הגרעין האלגברי, וההמורפיזם הוא העתקת ההכלה הטבעית.

ניתן להראות כי k הוא תמיד מונומורפיזם.

לא לכל מורפיזם בהכרח קיים גרעין, אך אם קיים גרעין אז הוא יחיד עד כדי איזומורפיזם.

דוגמאות

  • בקטגוריה של חבורות, בהינתן הומומורפיזם , אם K הוא הגרעין של f במובן הרגיל של המילה, אז K היא תת-קבוצה של X, ומורפיזם ההכלה הוא הגרעין של f במובן הקטגורי.
  • בקטגוריה של חוגים אין גרעין, משום שאין בקטגוריה זו מורפיזם אפס. (שהרי מניחים כי הומומורפיזמים מעתיקים את היחידה ליחידה).
This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.