משפט האי-שלמות של צ'ייטין

משפט האי-שלמות של צ'ייטין הוא משפט הקובע שבכל תורה עקבית עשירה מספיק, לא ניתן להוכיח טענות מסוימות לגבי סיבוכיות קולמוגורוב, למרות שהן נכונות. המשפט פורסם על ידי המתמטיקאי ומדען המחשב האמריקאי גרגורי צ'ייטין בשנת 1971.

ביתר פירוט, המשפט קובע שלכל תורה עקבית, ואפקטיבית שמסוגלת לתאר סיבוכיות קולמוגורוב קיים קבוע עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L} , כך שלכל n טבעי, לא ניתן להוכיח את הטענה "סיבוכיות קולמוגורוב של n גדולה מ-L", זאת על אף שיש מספרים טבעיים שהטענה נכונה לגביהם. מכיוון שהמשפט מראה שיש טענות נכונות שאי אפשר להוכיחן, אז בהכרח התורה אינה שלמה. לכן, למרבית התורות, משפט האי-שלמות הראשון של גדל מתקבל כמסקנה של משפט האי-שלמות של צ'ייטין (המשפט של גדל דורש תנאים מוחלשים במעט לגבי התורה ולכן תקף גם לתורות סטנדרטיות פחות).

בניגוד להוכחת המשפט של גדל, שדומה לפרדוקס השקרן, הוכחת המשפט של צ'ייטין עושה שימוש בפרדוקס של ברי. ההוכחה מראה שאם המשפט אינו נכון, אז מקבלים סתירה בדמות הפרדוקס של ברי.

נוסח פורמלי

סיבוכיות קולמוגורוב (הקרויה גם "סיבוכיות קולמוגורוב-צ'ייטין") של מספר טבעי n מסומנת ומוגדרת כאורך (מספר התווים) של תוכנית המחשב הקצרה ביותר שמדפיסה את n. כדי שהמושג יוגדר היטב יש לבחור שפת תכנות שהתוכניות נכתבות בה (בדרך כלל בוחרים בקידוד כלשהו של מכונות טיורינג כסדרת ביטים). סיבוכיות קולמוגורוב של מספר תלויה בשפה הנבחרת, אך אין חשיבות רבה לבחירה - לכל שתי שפות תכנות קיים קבוע, כך שההפרש בסיבוכיות של כל מספר שהוא לפי שתי השפות הוא תמיד קטן מן הקבוע.

משפט האי־שלמות של צ'ייטין. לכל תורה עקבית ואפקטיבית שמסוגלת לתאר סיבוכיות קולמוגורוב קיים קבוע עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L} (התלוי בתורה ובשפת התכנות) כך שלכל n טבעי לא ניתן הוכיח את הטענה "עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle L<K(n)} " במסגרת התורה.

יש רק מספר סופי של תוכניות מחשב שקצרות מ-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L} . לכן יש רק מספר סופי של מספרים שמקיימים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L \ge K(n)} , וכמעט כל המספרים מקיימים עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle L<K(n)} . למרות זאת, משפט האי-שלמות של צ'ייטין קובע שלגבי אף אחד מן המספרים האלה לא ניתן להוכיח באופן ספיציפי ש-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L < K(n)} .

הוכחה

תהא עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle T} תורה המקיימת את תנאי המשפט. יהי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L} מספר טבעי גדול מספיק (התנאי המדויק על L ייקבע בהמשך). נניח בשלילה שקיים כך שקיימת הוכחה לטענה עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle L<K(n)} . נסדר את כל ההוכחות האפשריות ב-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle T} בסדרה לפי סדר לקסיקוגרפי. נסמן ב-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle w} את ההוכחה הראשונה בסדרה לטענה מהצורה עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle L<K(n)} . נסמן ב-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m} את המספר שלגביו עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle w} מוכיחה כי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L<K(m)} .

נתאר כעת תוכנית מחשב עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle M} שמדפיסה את עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m} . עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle M} עוברת אחת אחת על כל ההוכחות בסדרה עד שהיא פוגשת הוכחה לטענה מהצורה עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle L<K(n)} , ואז היא מדפיסה את (כאן נכנסת הדרישה ש-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle T} אפקטיבית, אחרת לא ניתן לזהות את ההוכחה). לפי ההגדרות שקבענו, עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle M} תפגוש עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle w} ותדפיס את עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m} .

כעת נעריך את האורך של התוכנית עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle M} . החלק ב-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle M} שמגדיר את המעבר על הסדרה ואת קריאת ההוכחות הוא מאורך קבוע. האורך של החלק שמורה לבדוק האם ההוכחה מוכיחה טענה מהצורה עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle L<K(n)} תלוי באורך של הייצוג של עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L} . את עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L} ניתן לייצג בשיטה העשרונית בעזרת תווים. לכן האורך של התוכנית עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle M} כולה הוא כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle C} מספר קבוע כלשהו (שערכו תלוי בשפת תכנות וב-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle T} ).

ל-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L} גדול מספיק מתקיים האי-שוויון . מכאן ש-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle M} היא תוכנית מחשב שאורכה קצר מ-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L} והיא מדפיסה את עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m} ולכן עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L>K(m)} . זאת בסתירה ל-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle w} שמוכיחה ש-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L<K(m)} . לכן עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle T} לא יכולה להיות עקבית.

מסקנות

בשנת 1943 הוכיח המתמטיקאי סטפן קליני שתורות הכוללות את האריתמטיקה הסטנדרטית מסוגלות לתאר חישוביות. לתורות אלו משפט האי-שלמות של צ'ייטין מוכיח אי-שלמות וגורר את המשפט הראשון של גדל. למקרים האלו קליני כבר הציג הוכחה קצרה במיוחד למשפט של גדל, בהסתמך על אי-כריעות בעיית העצירה.

מהמשפט נובע ש- אינה פונקציה ניתנת לחישוב. אילו הייתה תוכנית מחשב שהייתה מסוגלת לחשב את לכל n, הרי שבקלות ניתן היה להוכיח טענה מהצורה עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle L<K(n)} . ניתן גם להוכיח תוצאה זו ישירות בדרך דומה.

הישראלים שירה קריצ'מן ורן רז הוכיחו משפט אנלוגי למשפט האי-שלמות השני של גדל על סמך משפט האי-שלמות של צ'ייטין. הם הראו כי תורות המקיימות את תנאי המשפט של צ'ייטין ובנוסף חזקות מספיק כדי לתאר את הוכחת המשפט עצמה, לא יכולות להוכיח את העקביות של עצמן.

קישורים חיצוניים

הערך באדיבות ויקיפדיה העברית, קרדיט,
רישיון cc-by-sa 3.0
This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.