סכמה (מתמטיקה)

ערך זה זקוק לעריכה: הסיבה לכך היא: מכלולזציה, עריכה לשונית.
אתם מוזמנים לסייע ולתקן את הבעיות, אך אנא אל תורידו את ההודעה כל עוד לא תוקן הדף. אם אתם סבורים כי אין בדף בעיה, ניתן לציין זאת בדף השיחה.

במתמטיקה, סכמה היא מבנה מתמטי שמכליל בכמה דרכים את הרעיון של יריעה אלגברית מהגאומטריה האלגברית הקלאסית. לדוגמה, המשוואות עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x=0} ו-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x^2=0} מגדירים את אותן היריעות אך סכמות שונות, הסכמה מאפשרת להגדיר את הרעיון של "יריעה" מעל כל חוג קומוטטיבי (לדוגמה, עקום פרמה מוגדר מעל חוג השלמים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{Z}} )

סכמות הוצגו לראשונה על ידי אלכסנדר גרות'נדיק בשנת 1960 בספרו "יסודות הגאומטריה האלגברית"; מטרתו של גרות'נדיק היא לבנות פרמול חדש של התחום כדי לפתור שאלות עמוקות וחשובות בתחום ובתחומים הקשורים, כגון השערות וויל (שהאחרונה מביניהן נפתרה על ידי פייר דליין (Pierre Delige). הגישה מתבססת רבות על אלגברה קומוטטיבית, ותורת הסכמות מביאה את האפשרות להשתמש בכלים של טופולוגיה ואלגברה הומולוגית, בנוסף, סכמות מקשרות בקשר הדוק בין גאומטריה אלגברית לבין תורת המספרים (מה ששימש רבות את ווילס בהוכחת "המשפט האחרון של פרמה").

הגדרה

עבור חוג קומוטטיבי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle R} נגדיר את המרחב המחוייג עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (\text{Spec}R,O_{\text{Spec}R})} כאשר הספקטרום של עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle R} מצויד בטופולוגיית זריצקי והוא נקרא הסכמה האפינית המשויכת ל-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle R} עם אלומת החוגים המתאימה, סכמה אפינית היא מרחב מחוייג שאיזומורפי למרחב כנ"ל עבור חוג כלשהו. מרחב מחוייג עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X} יקרא סכימה אם יש הצגה שלו כאיחוד של קבוצות עבור עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle i\in I} כך שכל מרחב עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (U_i,O_X|_{U_i})} הוא סכימה אופיינית, כלומר, סכמה היא מין הדבקה של סכמות אופייניות.

בעבר, סכמה נקראה "קדם-סכמה" והמונח סכמה ניתן לקדם-סכמה מופרדת, הטרמינולוגיה הזו כבר לא בשימוש אך עדיין יש ספרים שאפשר למצוא את המינוח, כמו ב"יסודות הגאומטריה האלגברית" של גרות'נדיק ו"הספר האדום" של מאמפורד.

דוגמה קלאסית היא המרחב האופייני ה-n ממדי, עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{A}_k^n :=\text{Spec}(k[x_1,...,x_n])} עבור שדה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle k} (לרוב סגור אלגברית).

מורפיזמים בין סכימות

יהיו סכמות, מורפיזם הוא המידע הבא:

  1. העתקה רציפה בין שני מרחבים טופולוגיים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \pi : X\to Y}
  2. מורפיזם של אלומות עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \pi^\sharp : \mathcal{O}_Y\to\pi_{*}\mathcal{O}_X} כאשר הוא ה"דחיפה" של האלומה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathcal{O}_X} על עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle Y} .
  3. נדרוש בנוסף גם שהומומורפיזם המושרה מ- על הגבעולים יהיה הומומורפיזם של חוגים מקומיים, כלומר אם כך ש-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \pi(p)=q} אז אם נסמן את ההומומורפיזם המושרה מ- על ידי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \pi_q:\mathcal{O}_{Y,q}\to\mathcal{O}_{X,p}} ואת כהאידיאלים המקסימליים בחוגים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathcal{O}_{X,p},{O}_{Y,q}} בהתאמה, אז הדרישה על היא שיתקיים: עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \pi_q(m_q)\subseteq m_p} .

לכל סכמה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X} יש מורפיזם טבעי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \theta:X\to\text{Spec}\Gamma(X,\mathcal{O}_X)} שהוא איזומורפיזם אם ורק אם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X} סכמה אפינית. ניסוח זה בעצם שקול לטענה שאם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle R} חוג קומוטטיבי ו-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X} סכמה, אז יש התאמה חח"ע ועל: עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Mor}(X,\text{Spec}R) \cong \text{Hom}(R,\Gamma(X,\mathcal{O}_X))}

יתרה מזאת, הטענה דלעיל יכולה לתת אפיון של סכימות אופייניות כך: סכמה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X} היא אופיינית אם ורק אם לכל סכמה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle S} ההעתקה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Mor}(S,X)\to \text{Hom}(\Gamma(X,\mathcal{O}_X),\Gamma(S,\mathcal{O}_S))} היא חח"ע ועל.

הוכחה: אם ההעתקה חח"ע ועל אז עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Mor}(-,X) \simeq\text{Mor}(-,\text{Spec}\Gamma(X,\mathcal{O}_X))} ולכן עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X} איזומורפי ל- מהלמה של יונדה, הכיוון השני ברור.

ידוע כי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{Z}} הוא האובייקט הראשון בקטגוריה של החוגים (הקומוטטיביים עם יחידה, ) ולכן מהטענה נקבל כי הוא האובייקט האחרון בקטגוריית הסכמות (עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Sch}} ), כלומר, מכל סכמה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X} יש מורפיזם יחיד .

אם נסמן את קטגוריית הסכמות האופייניות ב-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{ASch}} אז מהמשפט נקבל תוצאה חשובה, עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Ring}^{\text{op}} = \text{ASch}} .

למעשה, למורפיזמים יש הרבה חשיבות רבה בתאוריה הזאת וגרות'נדיק אף אמר "לא צריך ללמוד סכמות, צריך ללמוד מורפיזמים".

דוגמאות

  • כל סכמה אופיינית היא סכימה (אנחנו מניחים כי כל החוגים הם קומוטטיביים).
  • פולינום עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f} מעל שדה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle k} , כלומר מגדיר תת-סכמה סגורה במרחב האפיני עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{A}_k^n} , הנקראת גם "היפר-יריעה". פורמלית, היא מוגדרת כ-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Spec}(k[x_1,...,x_n]/(f))} . לדוגמה, הפולינום , מגדיר עקומה סינגולרית ב-.
  • לכל חוג עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle R} אפשר לבנות את המרחב הפרויקטיבי ה-n ממדי מעל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle R} על ידי "הדבקת" n+1 עותקים של המרחב לאורך הקבוצות הפתוחות.
  • הישר עם "שני" אפסים, מתחילים מלקחת שני עותקים של הישר האפיני (מעל איזשהו שדה k) ונזהה את הנקודות בקבוצה הפתוחה עם עצמן על ידי הזהות, פורמלית: עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \left ( \mathbb{A}_{\mathbb C}^1\coprod \mathbb{A}_{\mathbb C}^1\right )/\sim} כאשר היחס שקילות הוא זה שתיארנו. זוהי דוגמה לסכמה לא פרידה, ובפרט לא אופיינית.
  • בהינתן פולינום הומוגני ממעלה חיובית ב- מגדיר תת-סכמה סגורה על ידי במרחב הפרויקטיבי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}_{R}^n} שנקרא היפר-יריעה פרויקטיבית, פורמלית, תת-הסכמה היא . לדוגמה, תת-הסכמה המוגדרת על ידי , זו עקומה אליפטית מעל הרציונלים.
  • סיבה מספיק טובה להתעניין בסכמות ולא בסכות אפיניות רק היא כי למשל לא חייב שקבוצה פתוחה של סכמה אופיינית לא בהכרח תהיה אופיינית. לדוגמה, עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X=\mathbb{A}^n-0} למשל מעל המרוכבים; אז המרחב עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X} לא אפיני עבור עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n\geq 2} (עבור נקבל את הציר בלי הראשית וזה איזומורפי ל- ובפרט לא אפיני.) כדי להראות שהמרחב שלנו לא אפיני, צריך להראות שכל פונקציה רגולרית על המרחב שלנו נוכל להרחיב על כל המרחב האפיני עבור עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n\geq 2} (הטענה דומה ללמה של הארטוגס מאנליזה מרוכבת אך קלה יותר להוכחה). ההכלה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle i:X\to \mathbb A^n } משרה הומומורפיזם של חוגים . אם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X} היית סכמה אופיינית אז i הייתה איזומורפיזם אך היא לא על ולכן לא איזומופורפיזם.
הערך באדיבות ויקיפדיה העברית, קרדיט,
רישיון cc-by-sa 3.0
This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.