אובייקט התחלתי ואובייקט סופי
בתורת הקטגוריות, אובייקט התחלתי ואובייקט סופי הם סוג של אובייקטים בקטגוריה שמהווים עצמי קצה מבחינת המורפיזמים שיוצאים מהם ונכנסים לתוכם. באמצעות בניות בסיסיות אלה ניתן להגדיר בניות מורכבות יותר כגון מכפלה (תורת הקטגוריות) של שני עצמים.
הגדרה
תהי קטגוריה.
- אובייקט יקרא אובייקט התחלתי (Initial object) אם לכל אובייקט עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X \in \mathrm{Ob}(\mathcal{C})} בקבוצה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathrm{Mor}(I,X)} יש איבר אחד בדיוק. במלים אחרות, לכל אובייקט X: מ-I יוצא מורפיזם יחיד ל-X (כלומר: עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f : I \to X} קיים ויחיד).
- אובייקט עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F \in \mathrm{Ob}(\mathcal{C})} יקרא אובייקט סופי (Final object) אם לכל אובייקט עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X \in \mathrm{Ob}(\mathcal{C})} בקבוצה עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \mathrm {Mor} (X,F)} יש איבר אחד בדיוק. במלים אחרות, לכל אובייקט X: ל-F נכנס מורפיזם יחיד מ-X (כלומר: עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g : X \to F} קיים ויחיד).
- אובייקט עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle Z \in \mathrm{Ob}(\mathcal{C})} יקרא אובייקט אפס אם הוא גם אובייקט התחלתי וגם אובייקט סופי.
אובייקט התחלתי מוגדר ביחידות עד כדי איזומורפיזם קנוני. באופן דומה, כך גם אובייקט סופי.
נראה זאת לגבי אובייקט התחלתי: נניח ש-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle I_1} ו-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle I_2} הם אובייקטים התחלתיים. אזי קיים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in \mathrm{Mor}(I_1,I_2)} יחיד כי I1 אובייקט התחלתי וקיים יחיד כי I2 אובייקט התחלתי. כעת, עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g \circ f \in \mathrm{Mor}(I_1,I_1)} אבל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathrm{id}_{I_1} \in \mathrm{Mor}(I_1,I_1)} ומאחר שהוא יחיד בקבוצה זו עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \mathrm {id} _{I_{1}}=g\circ f} . באופן דומה מוכיחים ש-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \circ g = \mathrm{id}_{I_2}} ולכן f ו-g הופכיים אחד לשני ומהווים איזומורפיזמים כך ש-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle I_1 \cong I_2} .
דוגמאות
- בקטגוריית הקבוצות עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathcal{C}=\mathbf{Sets}} האובייקט ההתחלתי הוא הקבוצה הריקה (בשל קיומה של הפונקציה הריקה), ואילו כל יחידון הוא אובייקט סופי (שכן לכל קבוצה X ישנה העתקה יחידה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X \to \{a \}} וזו הפונקציה השולחת כל איבר מ-X ל-a).
- בקטגוריית החבורות עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathcal{C}=\mathbf{Grps}} החבורה הטריוויאלית עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \{ e \}} (כלומר: החבורה שמורכבת רק מאיבר היחידה) היא אובייקט התחלתי (שכן הומומורפיזם של חבורות שולח יחידה ליחידה) ואובייקט סופי, ולכן אובייקט אפס.
בעזרת אובייקטים התחלתיים אפשר להגדיר אובייקטים בניות נוספים, למשל מכפלה (תורת הקטגוריות). מכפלה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A \times B} של עצמים היא אובייקט סופי בקטגוריה
- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathcal{C}_{A,B} = \left\{ (P, \alpha : P \to A , \beta : P \to B ) \ | \ P \in \mathrm{Ob}(\mathcal{C}), \alpha \in \mathrm{Mor}(P,A), \beta \in \mathrm{Mor}(P,B) \right\}}
של שלשות סדורות המורכות מעצם P ושני מורפיזמים ל-A ו-B. כלומר, אם , אזי לכל עצם D עם מורפיזמים ו-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \beta' : D \to B} קיים מורפיזם יחיד כך ש-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \alpha' = \alpha \circ f} ו-.
ראו גם
- מכפלה (תורת הקטגוריות)
- קו-מכפלה (תורת הקטגוריות)
- פונקטור מיוצג