מונוטוניות (משחק מיקוח)

בתורת המשחקים, מונוטוניות היא תכונה שניתן לדרוש מפתרון למשחק מיקוח. במשחק מיקוח ישנם שני צדדים המנהלים ביניהם משא ומתן. פתרון למשחק הוא דרך לבחור בכל משחק מיקוח תוצאה מסוימת מתוך אוסף התוצאות האפשריות. באופן אינטואיטיבי, פתרון הוא מונוטוני כאשר הוספה של תוצאות נוספות למשחק לא מרעה את מצבם של השחקנים.

הגדרה פורמלית

פתרון הוא פונקציה המתאימה לכל משחק מיקוח איבר באוסף התוצאות האפשריות . נסמן את הרווח המקסימלי ששחקן 1 יכול לקבל ב-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m_1\left(S\right)} ואת הרווח המקסימלי ששחקן 2 יכול לקבל ב-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m_2\left(S\right)} . נקודת האוטופיה היא עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \left(m_1\left(S\right),m_2\left(S\right)\right)} .

  • נאמר כי פתרון עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f} מקיים את עיקרון המונוטוניות המלאה אם לכל שני משחקי מיקוח ו- כך ש- מתקיים כי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f\left(S,d\right) \le f\left(T,d\right)} .
  • נאמר כי פתרון עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f} מקיים את עיקרון המונוטוניות המוגבלת אם לכל שני משחקי מיקוח ו- בהם:
א.
ב.
ג. עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m_2\left(S\right) = m_2\left(T\right)}
מתקיים כי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f\left(S,d\right) \le f\left(T,d\right)} .

מונוטוניות ופתרון נאש

פתרון נאש למשחקי מיקוח לא בהכרח מקיים מונוטוניות. קלעי וסמורודינסקי הדגימו זאת על ידי צמד המשחקים הבא: הקבוצה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle S_1} היא הקמור של הנקודות . הקבוצה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle S_2} היא הקמור של הנקודות עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \left(0,1\right),\left(1,0\right),\left(1,0.7\right),\left(0,0\right)} . נקודת אי-ההסכמה היא . במקרה זה מתקיימים התנאים הדרושים למונוטוניות מוגבלת: (א) , (ב) עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m_1\left(S_1\right)=m_1\left(S_2\right)=1} , (ג) עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m_2\left(S_1\right)=m_2\left(S_2\right)=1} .

פתרון נאש למשחק המוגדר על ידי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle S_1} הוא עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathcal{N}\left(S_1,d\right)=\left(0.75,0.75\right)} . פתרון נאש למשחק המוגדר על ידי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle S_2} הוא עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathcal{N}\left(S_2,d\right)=\left(1,0.7\right)} . אם כן, אף על פי ש-, מצבו של שחקן 2 הורע במעבר מ-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle S_1} ל-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle S_2} .

אפיון פתרון מונוטוני

כיוון שפתרון נאש אינו בהכרח מונוטוני, עלה הצורך למצוא אפיון חלופי לפתרונות מונוטוניים. לשם כך נגדיר את העקרונות הבאים:

  • הומוגניות - פתרון עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f} הוא הומוגני אם לכל משחק מיקוח ולכל קבוע חיובי מתקיים כי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f\left(cS\right)=cf\left(S\right)} .
  • סבירות פרטית חזקה - פתרון עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f} מקיים את עקרון הסבירות הפרטית החזקה בכל שחק מיקוח שני השחקנים מרוויחים ממש ביחס לנקודת האי-הסכמה, כלומר, עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f\left(S\right)>>\left(0,0\right)} .

לכל זווית בין 0° ל-90° מוגדר פתרון תלוי זווית עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_x} באופן הבא: היא הנקודה הגבוהה ביותר ב- הנמצאת על הישר היוצא מראשית הצירים בזווית . פתרון כזה מקיים הומוגניות, יעילות, סבירות פרטית חזקה ומונוטוניות מלאה. קלעי הוכיח כי כל פתרון המקיים את ארבעת העקרונות האלה שווה לפתרון תלוי זווית כלשהי.

אם מחליפים חלק מהדרישות מתקבל פתרון אחר הנקרא פתרון קלעי סמורודינסקי. קלעי וסמורודינסקי הוכיחו כי קיים פתרון יחיד המקיים סימטריה, יעילות, קווריאנטיות תחת טרנספורמציות אפיניות ומונוטוניות מוגבלת. פתרון זה מסומן ב- ומתקבל על ידי הנקודה הגבוהה ביותר ב- הנמצאת על הקו המחבר את נקודת האי-הסכמה עם נקודת האוטופיה. הנקודה נקראת נקודת ההסכמה של קלעי וסמורודינסקי.

לקריאה נוספת

This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.