מספר ליוביל

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

מספר ליוביל הוא מספר ממשי שניתן לקירוב דיופנטי מכל סדר שהוא. פורמלית, מספר ליוביל אם לכל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n} טבעי קיימים ו־עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle q>1} שלמים כך שמתקיים:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 0<\left|x-\frac{p}{q}\right|<\frac{1}{q^n}}

מספרי ליוביל נקראים על שם המתמטיקאי ז'וזף ליוביל שהוכיח ב־1844 את משפט ליוביל שממנו נובע כי הם מספרים טרנסצנדנטיים. אלו היו המספרים הטרנסצנדנטיים הראשונים שהתגלו.

קבוע ליוביל

הדוגמה המוכרת ביותר למספר ליוביל היא קבוע ליוביל שהוגדר על ידי ליוביל ב־1851:

הספרה 1 מופיעה בפיתוח העשרוני של המספר במקום ה־עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle j!} לאחר הנקודה העשרונית לכל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle j} טבעי (ראו עצרת) ובכל מקום אחר מופיעה הספרה 0.

נגדיר סדרות:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p_n=\sum_{j=1}^n10^{n!-j!};\quad q_n=10^{n!}}

לכל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n} טבעי מתקיים

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \left|c-\frac{p_n}{q_n}\right|=\sum_{j=1}^\infty10^{-j!}-\sum_{j=1}^n10^{-j!}=\sum_{j=n+1}^\infty10^{-j!}=10^{-(n+1)!}+10^{-(n+2)!}+\cdots<10\cdot10^{-(n+1)!}\le\bigl(10^{-n!}\bigr)^n=\frac{1}{{q_n}^n}}

בזכות משפט ליוביל, קבוע ליוביל היה לדוגמה הראשונה המוכרת למספר טרנסצנדנטי.

תכונות

קל לראות שכל מספר ליוביל הוא אי־רציונלי: נניח בשלילה כי מספר ליוביל רציונלי. נבחר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n} גדול מספיק עבורו עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 2^{n-1}>b} , ואז לכל ו־עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle q\ge2} מתקיים

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \left|\frac{a}{b}-\frac{p}{q}\right|=\left|\frac{aq-bp}{bq}\right|\ge\frac{1}{bq}>\frac{1}{2^{n-1}q}\ge\frac{1}{q^n}}

בסתירה להגדרה.

לפי משפט ליוביל כל מספר אלגברי אי־רציונלי אינו ניתן לקירוב דיופנטי מסדר הגדול מהדרגה שלו (מעלת הפולינום המינימלי שלו). מכיוון שמספרי ליוביל אי־רציונליים וניתנים לקירוב מכל סדר הם בהכרח טרנסצנדנטיים.

עוצמה ומידה

נוכל להחליף את המופעים של הספרה 1 בקבוע ליוביל בכל סדרת ספרות שנחפץ, והמספר עדין יישאר מספר ליוביל. מכאן שעוצמת קבוצת מספרי ליוביל היא כעוצמת קבוצת הסדרות, שהיא עוצמת הרצף. כלומר יש "הרבה יותר" מספרי ליוביל מאשר מספרים אלגבריים (שהם בני מנייה).

לעומת זאת, קבוצת ליוביל היא קבוצה ממידה אפס והיא זניחה ביחס לקבוצת המספרים הטרנסצנדנטיים (שהמשלים שלה ממידה אפס). במילים אחרות, כמעט כל המספרים הטרנסצנדנטיים אינם מספרי ליוביל. ההוכחה לכך קצרה:

לכל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle q\ge2,n>2} נגדיר איחוד של קטעים פתוחים:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle V_{n,q}=\bigcup\limits_{p=-\infty}^\infty\left(\frac{p}{q}-\frac{1}{q^n},\frac{p}{q}+\frac{1}{q^n}\right)}

נסמן את קבוצת מספרי ליוביל. כל מספר ליוביל נמצא ב־ ל־ מסוים ולכל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n} . כלומר לכל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n} מתקיים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L\sube\bigcup\limits_{q=2}^\infty V_{n,q}} . לכן לכל טבעי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m}

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L\cap (-m,m)\sube\bigcup\limits_{q=2}^\infty V_{n,q}\cap(-m,m)\sube\bigcup\limits_{q=2}^\infty\bigcup\limits_{p=-mq}^{mq}\left(\frac{p}{q}-\frac{1}{q^n},\frac{p}{q}+\frac{1}{q^n}\right)}

אורך הקטעים הוא עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \left|\left(\frac{p}{q}+\frac{1}{q^n}\right)-\left(\frac{p}{q}-\frac{1}{q^n}\right)\right|=\frac{2}{q^n}} ולכן

וכן וזאת לכל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m} . לכן ממידה אפס.

למספרי ליוביל ממד האוסדורף אפס. מבחינה טופולוגית מספרי ליוביל צפופים בישר הממשי.

הערך באדיבות ויקיפדיה העברית, קרדיט,
רישיון cc-by-sa 3.0
This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.