סדרת לוקאס
במתמטיקה, סדרת לוקאס היא סדרה של מספרים שלמים שאיבריה מקיימים נוסחת נסיגה מהצורה , כאשר קבועים. דוגמאות מוכרות לסדרות לוקאס הן סדרת פיבונאצ'י, מספרי מרסן, מספרי לוקאס וסדרת פל. הסדרות נקראות על שם אדואר לוקאס.
הגדרה פורמלית
לאחר בחירת הקבועים , סדרת לוקאס מוגדרת באמצעות נוסחת הנסיגה , ותנאי ההתחלה הקובעים את . בפרט, סדרות לוקאס עם תנאי ההתחלה (ונוסחת הנסיגה ) נקראת סדרת לוקאס מהסוג הראשון, וסדרת לוקאס עם תנאי ההתחלה (ונוסחת הנסיגה ) נקראת סדרת לוקאס מהסוג השני.
למשל,
- סדרת פיבונאצ'י.
- מספרי לוקאס.
- סדרת פל.
- סדרת פל-לוקאס.
- מספרי מרסן.
- סדרה בה נמצאים כל המספרים המשוכללים הזוגיים.
נוסחה מפורשת
את נוסחת הנסיגה של סדרת לוקאס אפשר לכתוב בעזרת מטריצות:
לכסון המטריצה מאפשר להגיע במהירות לנוסחה מפורשת של האבר הכללי, התלויה בערכי ההתחלה. המשוואה האופיינית של סדרת לוקאס היא . נסמן את הדיסקרימיננטה , לפי נוסחת השורשים פתרון המשוואה הוא:
ולכן אם שני השורשים שונים אז
ואם שני השורשים זהים, כאשר מתקיים .
זהויות
סדרות לוקאס משני הסוגים עם אותם פרמטרים קשורות ביניהן בכמה זהויות בסיסיות. להלן טבלת זהויות עם המקרה הפרטי של סדרת פיבונאצ'י ומספרי לוקאס כדוגמה.
זהות כללית | מקרה פרטי |
---|---|