סדר טוב

במתמטיקה, סדר טוב על קבוצה הוא סדר מלא שבו לכל תת-קבוצה לא ריקה יש איבר ראשון. הסדר הטוב מאפשר להשתמש בטכניקה של אינדוקציה טרנספיניטית על מנת להגדיר או להוכיח תכונות עבור כל אברי הקבוצה. דבר זה מהווה הכללה של מושג האינדוקציה המתמטית הרגילה שמוגדרת רק על המספרים הטבעיים.

הסדר הרגיל של המספרים הטבעיים הוא סדר טוב, כי בכל קבוצה של טבעיים יש איבר קטן ביותר (זהו עקרון הסדר הטוב). לעומת זאת, הסדר של המספרים השלמים אינו סדר טוב - לקבוצת כל השלמים אין איבר ראשון, משום שלכל מספר שלם ניתן למצוא מספר שלם קטן יותר. כל תת-קבוצה של קבוצה סדורה היטב היא סדורה היטב.

הטענה "כל קבוצה ניתן לסדר באמצעות סדר טוב", הקרויה משפט הסדר הטוב, שקולה לאקסיומת הבחירה וללמה של צורן. עם זאת, בעוד שאקסיומת הבחירה נחשבת סבירה מבחינה אינטואיטיבית, משפט הסדר הטוב מציב קשיים לא מבוטלים. למשל, קבוצת המספרים הממשיים אמורה להיות ניתנת לסידור טוב, אך לא ניתן להדגים בפועל סדר טוב שכזה. (הסדר הרגיל על המספרים הממשיים בוודאי אינו טוב: בקבוצת המספרים הגדולים מאפס אין איבר מינימלי).

בקבוצה סדורה היטב, לכל איבר (פרט לאיבר המקסימלי, אם יש כזה) יש איבר עוקב מיידי[1] וכל חתך[2] הוא או הקבוצה כולה או קטע התחלי.[3]

טיפוס הסדר של קבוצה סדורה בסדר טוב נקרא מספר סודר.

מחלקת הקבוצות הסדורות היטב

ארבע תכונות חשובות נוספות מתקיימות על מחלקת הסדרים. תכונות אלה מראות כי מחלקת הסדרים המלאים מסודרת בסדר מלא, ביחס לפעולה עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle Q\leq P} אם ורק אם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle Q \cong P} או עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle Q \cong P_x } .

  1. אי-סימטריות: משפט קנטור ברנשטיין חל גם על סדרים טובים, כלומר אם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (Q , \le)} סדרים טובים וניתן לשכן את P ב-Q וניתן לשכן את Q ב-P אז הסדרים איזומורפיים.
  2. השוואתיות: כל שני סדרים טובים ניתנים להשוואה, כלומר אם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (Q , \le)} סדרים טובים, אז או ש עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ Q \cong P} או ש עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \ Q\cong P_{x}} (כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P_x} קטע התחלי של P ) או ש (כאשר עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \ Q_{y}} קטע התחלי של Q).
  3. רפלקסיביות: תכונה זו מתקיימת באופן טריוויאלי באמצעות פונקציית הזהות.
  4. טרנזטיביות : לפי אופן הרכבת פונקציות איזומורפיות אם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (Q , \le)} סדרים טובים ו עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ g : P \rightarrow M } איזומורפיזמים, אז גם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ g \circ f : Q \rightarrow M } איזומורפיזם ולכן אם עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle Q\leq P} וגם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P \le M } אז .

יותר מכך כל תת-קבוצה של מחלקת הסדרים מסודרת בסדר טוב, כלומר קיים איבר ראשון בסדר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \le } כפי שהוגדר לעיל.

אפיון לקבוצה מסודרת היטב

טענה: עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (Q , \le) } מסודרת היטב אם ורק אם אין בה סדרה אינסופית יורדת.

הוכחת כיוון ראשון : נניח ש- Q לא מסודרת היטב ונבנה סדרה אינסופית יורדת. Q לא מסודרת היטב פירושו שקיימת תת-קבוצה P לא ריקה שאין בה איבר ראשון, נבחר איבר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ p_0} האיבר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p_0} הוא לא הראשון ולכן קיים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p_1} כך ש עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ p_0 > p_1} , אבל גם עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \ p_{1}} הוא לא האיבר הקטן ביותר בקבוצה ולכן קיים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ p_2} כך ש עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ p_0 > p_1 > p_2 } ונמשיך בבניה הזו לכל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p_n , n \in N } וזו סדרה אינסופית יורדת.

הוכחת כיוון שני: ננית שקיימת סדרה אינסופית יורדת ונראה ש-Q לא מסודרת היטב. נגדיר קבוצה P שמכילה את כל אברי הסדרה היורדת ורק אותם, ולכן P היא מהצורה ובתת קבוצה זו אין איבר ראשון, ולכן Q מכילה קבוצה שאין לה איבר ראשון ולכן Q לא מסודרת היטב.

הערות שוליים

  1. איבר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ y } נקרא עוקב מיידי של עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ x } אם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ y > x } ואין איבר עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle z\in Q} כך ש עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ y > z > x }
  2. תת-קבוצה M היא חתך של Q אם לכל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c \in M } , אם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ d < c } אז
  3. קטע התחלי (רישא): הוא קבוצה מהצורה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle S_x = \left\{y \in Q : y < x \right\}}
הערך באדיבות ויקיפדיה העברית, קרדיט,
רישיון cc-by-sa 3.0
This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.