מעבר פאזה קוונטי

מעבר פאזה קוונטיאנגלית: QPT - Quantum Phase Transition) הוא מעבר פאזה בין מצבים קוונטים שונים של מערכת בטמפרטורת האפס המוחלט. בניגוד למעברי פאזה קלאסיים, מעברי פאזה קוונטיים יתרחשו על ידי שינוי פרמטר פיזיקלי - כגון לחץ או שדה מגנטי - בטמפרטורת האפס המוחלט. מעבר הפאזה מתאר שינוי פתאומי במצב היסוד של המערכת עקב תנודות קוונטיות הנובעות מעיקרון האי-ודאות של הייזנברג.

תאוריה בסיסית למעברי פאזה קוונטיים

לגביש הנמצא בטמפרטורה עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle T=0} עם אנרגיה המתוארת על ידי המילטוניאן מהצורה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H(g)=H_0+gH_1} , כאשר הוא פרמטר צימוד חסר ממדים, ומקיים את יחסי החילופיות , רמות האנרגיה תלויות בממדי המערכת. גביש עם ממדים סופיים יציג רמות אנרגיה שאינן חוצות זו את זו (avoided level-crossing) וככל שנגדיל את ממדי המערכת רמות האנרגיה יתקרבו אחת לשנייה עד שלבסוף, בגבול התרמודינמי, יחצו זו את זו (level-crossing). בנקודת החציה האנרגיה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle E(g)} (שהיא שווה לאנרגיה החופשית כיוון שהטמפרטורה שווה לאפס) הופכת ללא-אנליטית ובכך מצביעה על מעבר פאזה. כזכור, טמפרטורת המערכת היא אפס ולכן מעבר פאזה זה אינו תרמי אלא קוונטי. כדי להבין זאת נסתכל על איברי ההמילטוניאן, עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H_0} ו- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H_1} , כעל איברים המתחרים ביניהם על מצבים קוונטים שונים של המערכת. כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g<<1} , מצב היסוד של המערכת, שהוא המצב האנרגטי המינימלי של המערכת, נובע בעיקר מתרומה של עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H_0} עם תנודות המושפעות מ- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H_1} . וכאשר , מצב היסוד של המערכת הוא עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H_1} בעיקרו. בנקודת החציה, , מתרחש מעבר פאזה המסמל את שינוי הדומיננטיות היחסית של עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H_0} ו- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H_1} . נקודת מעבר הפאזה נקראת נקודה קריטית קוונטית.

אנלוגיה בין מעברי פאזה קלאסיים וקוונטים

בטמפרטורה שאינה אפס, המצב המיקרוסקופי של המערכת, המאופיין במיקום ובתנע של כל חלקיק במערכת, אינו בשיווי משקל עקב תנודות תרמיות בחומר, אלא עובר בין מצבים באופן אקראי, בהסתברות הנתונה על ידי התפלגות בולצמן. מעברי פאזה הנובעים מתנודות תרמיות נקראים מעברי פאזה תרמיים (גם מעברי פאזה קלאסיים) והם תלויים בטמפרטורה בה המערכת נמצאת. קימות דוגמאות רבות למעברי פאזה קלאסיים בחיי היום יום, למשל הפיכת מים נוזליים לקרח מתחת לטמפרטורה של 0°C, ודוגמאות מורכבות יותר כמו הפיכת מתכת רגילה למוליך-על על ידי קירור מתחת לטמפרטורה מסוימת.

כאשר הטמפרטורה מתאפסת התנודות התרמיות פוסקות ולכן לא קיימים מעברי פאזה תרמיים. לעומת זאת, בטמפרטורת האפס המוחלט קיימות תנודות קוונטיות, הנובעות מעקרון האי-ודאות של הייזנברג, אשר, תחת תנאים מסוימים, עשויים לגרום למעברי פאזה הידועים כמעברי פאזה קוונטיים[1].

הגבול הקלאסי-קוונטי של מעברי פאזה

אף על פי שלא ניתן להגיע לאפס המוחלט, במערכות בטמפרטורה המתקרבת לאפס ניתן לזהות מאפיינים של מעברי פאזה באזור הנקודות הקריטיות. בטמפרטורות סופיות, התנודות התרמיות, שהן מסדר גודל של , כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle k_B} הוא קבוע בולצמן, מתחרות עם התנודות הקוונטיות, שהן מסדר גודל של עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \hbar \omega} , כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \hbar} הוא קבוע פלאנק המצומצם ו- היא התדירות הזוויתית האופיינית של התנודות הקוונטיות. בתחום הקלאסי, התנודות הקוונטיות זניחות ביחס לתנודות התרמיות. בתחום בו עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \hbar \omega >k_BT} , התנודות הקוונטיות הופכות דומיננטיות. תחום זה נקרא התחום הקוונטי הקריטי.

איור 2: תחומי מעברי הפאזה הקלאסיים והקוונטיים. הנקודה על ציר P, בה הטמפרטורה שווה לאפס, מכונה נקודה קריטית קוונטית (באנגלית: Quantum Critical Point - QCP)

סדרים במעברי פאזה ואוניברסליות האקספוננטים הקריטיים

מעברי פאזה מסווגים למעברי פאזה מסדר ראשון, אם קיימת אי-רציפות בנגזרת הראשונה של האנרגיה החופשית, כפונקציה של המשתנה התרמודינמי בנקודת המעבר, בה שתי הפאזות מתקיימות במקביל, כדוגמת מים וקרח, ומעברי פאזה מסדר שני, אם קיימת אי-רציפות בנגזרת השנייה של האנרגיה החופשית, כפונקציה של המשתנה התרמודינמי ורציפות בנגזרת הראשונה בנקודת המעבר, בה שתי הפאזות לא יכולות להתקיים במקביל, כדוגמת פרומגנט בו המומנט המגנטי מתאפס מעל לטמפרטורה מסוימת. במעבר פאזה רציף, כלומר מסדר שני, נקודת המעבר נקראת הנקודה הקריטית והיא מאופיינת על ידי פרמטר סדר, שהוא משתנה תרמודינמי כלשהו המקבל ערך סופי בפאזה המאופיינת בסדר ומתאפס בפאזה המאופיינת באי-סדר. כמו מעברי פאזה קלאסיים, גם מעברי פאזה קוונטיים יכולים להיות מסר ראשון ומסדר שני.

נמצא כי במעברי פאזה קלאסיים מסדר שני, האקספוננטים הקריטיים הם אוניברסליים, כלומר, הם זהים עבור מעברי פאזות שונים במערכות פיזיקליות שונות. כדי ליצור אנלוגיה בין מעברי פאזה קלאסיים לקוונטיים נסתכל על דוגמה כללית:

ידוע כי מעברי הפאזה מתאפיינים בהתבדרות פרמטרים פיזיקליים של המערכת. מרחק הקורלציה, , הוא דוגמה חשובה לפרמטר המתבדר בנקודה הקריטית כיוון שהוא קובע את סקאלת המרחק של ההתנהגות הקולקטיבית של המערכת בפאזה המסודרת. מרחק הקורלציה מתנהג לפי

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \xi\thicksim|T-T_c|^{-\nu}}

כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle T_c} היא הטמפרטורה הקריטית ו- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \nu} הוא האקספוננט הקריטי של מרחק הקורלציה. כעת נסתכל על המערכת הקוונטית המתוארת על ידי ההמילטוניאן עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H(g)=H_0+gH_1} . פונקציית החלוקה של המערכת הקוונטית היא

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle Z=Tr(e^{-\beta H})}

כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \beta={1 \over k_B T}} . ערך תצפית של אופרטור קוונטי, עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A} , נתון על ידי

כיוון שהעקבה אינווריאנטית, אפשר להעריך אותה בהצגה כלשהי, ולכן פונקציית החלוקה ניתנת לכתיבה באופן הבא

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle Z=\sum _{\{\phi \}} \langle \{ \phi \}|e^{-\beta H}|\{ \phi \} \rangle}

כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |\{ \phi \} \rangle} זה סט שלם של מצבים. במכניקה קוונטית, לאופרטור, עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle e^{-\beta H}} , יש את הצורה של אופרטור ההתפתחות בזמן, כך ש- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle t \rightarrow -i\beta} , לכן האופרטור, עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle e^{-\beta H}} , מקבל משמעות פיזיקלית בכך שהוא מקדם את המצב עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |\{ \phi \} \rangle} בזמן מדומה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \beta} . אם כן, פונקציית החלוקה סוכמת את כל האמפליטודות, אלמנטי המטריצה, של כל ה"דרכים" שיובילו את המערכת בחזרה למצב המקורי, כלומר, תנאי שפה מחזוריים, בכיוון המדומה של הזמן, נכפים על ידי העקבה בפונקציית החלוקה. במעבר הפאזה, המערכת בגבול התרמודינמי, ממדי המערכת אינסופיים וכדי לוודא מעבר פאזה קוונטי ניקח את הטמפרטורה לאפס או, במילים אחרות, עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \beta \rightarrow \infty} . בנקודה הקריטית הקוונטית, , המערכת תציג התבדרות פרמטרים כמו במעבר הפאזה הקלאסי. לשם השוואה, אורך הקורלציה של המערכת מתבדר לפי

עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \xi \thicksim |g-g_{c}|^{-\nu }}

בדומה לאורך הקורלציה במעברי פאזות קלאסיים. אך בשונה מהמעברים הקלאסיים, קיים גם "אורך" קורלציה בכיוון הזמן המדומה, עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \xi_\tau} , שמתבדר לפי

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \xi_\tau \thicksim|g-g_c|^{-\nu z}}

כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle z} הוא אקספוננט קריטי דינמי, שלא מופיע במעברים הקלאסיים כיוון שבמעברי פאזה תרמיים לא קיימת דינמיקה אינטרינזית.

מודלים תאורטיים למעברי פאזה קוונטיים

הפיזיקה המתארת את מעברי הפאזה הקוונטים היא מורכבת ולא מובנת לחלוטין, אך קיימים מספר מודלים תאורטיים פתירים הממחישים את החשיבות של מעברי פאזה קוונטים, ביניהם מודל איזינג הקוונטי, מודל הרוטור הקוונטי ומודל הובארד, לחלקם אף יישומים ניסויים.

מודל איזינג הקוונטי - דוגמה למעבר פאזה קוונטי

מודל איזינג הקוונטי מתואר על ידי ההמילטוניאן

כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J>0} הוא קבוע שחלוף הקובע את סקאלת האנרגיה המיקרוסקופית, ו- הוא קבוע צימוד חסר ממדים אשר ישמש לכיוון ההמילטוניאן אל מעבר הפאזה הקוונטי. דרגות החופש הקוונטיות של המערכת באות לידי ביטוי על ידי אופרטורי מטריצות פאולי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \hat{\sigma_i^\mu}} (כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mu=x,z} ) השוכנים באתרי סריג בעל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d} ממדים ופועלות על מצבי הספין של האתר . הסכום הוא על שכנים קרובים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle i,j} . הערכים העצמיים של אופרטורי מטריצות פאולי יסומנו והם יכולים לקבל את הערכים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \pm1} עבור ספין במצב up עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |\uparrow\rangle_i} וספין במצב down עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |\downarrow\rangle_i} . מצב היסוד של ההמילטוניאן תלוי בפרמטר הצימוד חסר הממדים, לכן נבחן כיצד משתנה המערכת בגבולות שונים של :

  • כאשר האיבר הראשון בהמילטוניאן דומיננטי ולכן מצב היסוד הוא

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |0\rangle=\prod_i(|\uparrow\rangle_i\pm|\downarrow\rangle_i)/\sqrt{2}} כאשר אלו שני מצבים עצמיים של עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \hat{\sigma_i^x}} עם ערכים עצמיים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \pm1} . הערכים של באתרים שונים חסרי קורלציה במצב היסוד הזה, לכן

עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \langle 0|{\hat {\sigma _{i}^{z}}}{\hat {\sigma _{j}^{z}}}|0\rangle =\delta _{ij}}

תיקוני הפרעות ייצרו קורלציה ב- ועבור גדול מספיק נצפה לקורלציות קצרות-מרחק מהצורה

כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x_i} היא קואורדינטה מרחבית באתר . עבור גדולים, מצב היסוד הוא אותו מצב יסוד עבור גדול ואורך הקורלציה הוא

עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \xi \thicksim |g-g_{c}|^{-\nu }} כפי שהוצג בפסקה הקודמת.

  • כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g<<1} האיבר השני בהמילטוניאן דומיננטי. אם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g=0} , הספינים הם או למעלה או למטה. כאשר נגדיל במעט את ניצור ערבוב מצבים בחלק מהספינים בכיוונים מנוגדים, אך במערכת אינסופית, הניוון ישרוד עבור כל סדר סופי בתורת ההפרעות ב- , כיוון שקיימת סימטריה גלובלית הממפה את מצבי היסוד אחד לשני. מערכת תרמודינמית תמיד תבחר מצב יסוד אחד על פני השני. מצב זה מכונה "שבירת סימטריה ספונטנית" של הסימטריה. התנהגות הקורלציה של היא

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lim_{|x_i-x_j|\rightarrow\infty}\langle0|\hat{\sigma_i^z}\hat{\sigma_j^z}|0\rangle=N_0^2}

איור 3: פיסה של מוליך על בטמפרטורה-גבוה bismuth strontium calcium copper oxide-BSCCO-2223 תיאורית מעבר הפאזה הקוונטית מספקת הסבר לתופעה.

כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |0\rangle} הוא אחד ממצבי היסוד ו- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle N_0\neq0} היא המגנטיציה הספונטנית של מצב היסוד.

ערכי הקורלציה עבור שני תחומים לא יכולים להשתנות בצורה אנליטית כפונקציה של . חייב להתקיים ערך קריטי בו פונקציות הקורלציה ישתנו אחת לשנייה - נקודה זו היא נקודת מעבר הפאזה הקוונטית.

יישומים

עד לפני מספר עשורים, נושא זה נחשב לתאורטי בלבד כיוון שבפועל לא ניתן להגיע לטמפרטורת האפס המוחלט, אך פיתוחים תאורטיים וניסויים שנעשו לאחרונה הראו כי קיום של נקודות קריטיות קוונטיות בטמפרטורת האפס המוחלט מסבירות תופעות שעד כה נחשבו לבעיות לא פתירות במערכות חומר מעובה רבות. דוגמאות לכך ניתן למצוא במוליכי-על-בטמפרטורות-גבוהות[2], יסודות מגנטים-מבודדים נדירים[3], תרכובות של פרמיונים כבדים[4][5] וגז אלקטרונים דו ממדי[6].

ראו גם

לקריאה נוספת

  • Subir Sachdev - "Quantum Phase Transitions"
  • Lincoln D.carr - "Understanding Quantum Phase Transitions"
  • Vladimir Dobrosavljevi´c, Nandini Trivedi, James M. Valles, Jr - "Conductor-Insulator Quantum Phase Transitions"
  • Kaden Richard, Alan Hazzard - "Quantum Phase Transitions in Cold Atoms and Low Temperature Solids"

הערות שוליים

  1. Sondhi S L, Girvin S M, Carini J P and Shahar D 1997 Rev. Mod. Phys. 69 315
  2. Sachdev S 2000 Science 288 475
  3. Bitko D, Rosenbaum T F and Aeppli G 1996 Phys. Rev. Lett. 77 940
  4. Coleman P 1999 Physica B 259-261 353
  5. E. R. Schemm, R. E. Baumbach, P. H. Tobash, F. Ronning, E. D. Bauer, A. Kapitulnik Phys. Rev. B 91, 140506 (2015)
  6. Kravchenko S V, Mason W E, Bowker G E, Furneaux J E, Pudalov V M and D’Iorio M 1995 Phys. Rev. B 51 7038
הערך באדיבות ויקיפדיה העברית, קרדיט,
רישיון cc-by-sa 3.0
This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.