משפט המספרים המחומשים

משפט המספרים המחומשים הוא משפט הקובע את הפיתוח לטור של המכפלה האינסופית עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \prod _{k=1}^{\infty }(1-x^{k})} .

נסמן את המספר המחומש המוכלל ה־־י. משפט המספרים המחומשים קובע את הזהות המפתיעה:

כלומר,

השוויון הוא שוויון בין טורי חזקות פורמליים, והוא מתכנס לכל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |x|<1} .

התיעוד הראשון של המשפט מופיע בהתכתבות בין לאונרד אוילר לדניאל ברנולי מ-1741. אוילר נתן הוכחה מלאה למשפט במכתב לכריסטיאן גולדבך ב-1750.

השימוש העיקרי במשפט הוא להוכחת נוסחאות נסיגה לפונקציית המחלקים ולפונקציית החלוקה.

הוכחה

ההוכחה המקורית של אוילר היא דרך מניפולציות אלגבריות. נביא כאן הוכחה קומבינטורית יותר באופיה.

ראשית נגדיר מינוח שימושי. חלוקה של מספר שלם היא הצגה שלו כסכום של מספרים טבעיים. שתי חלוקות הן זהות אם ההבדל היחיד ביניהן הוא סדר המחוברים. חלוקה נבדלת היא חלוקה שבה כל המחוברים שונים זה מזה. למשל החלוקות הנבדלות של 8 הן: 1+2+5, 1+3+4, 1+7, 2+6, 3+5, 8. חלוקה נבדלת תקרא חלוקה זוגית או חלוקה אי-זוגית אם מספר המחוברים בה הוא זוגי או אי-זוגי בהתאמה (זהו אינו השימוש המקובל במינוחים אלו). נשים לב כי ל-8 יש מספר זהה של חלוקות זוגיות ואי-זוגיות. עובדה זו אינה מקרית, כפי שיוסבר בהמשך.

נגדיר את הטור הפורמלי:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty a_n x^{n}=\prod_{k=1}^{\infty}\left(1-x^{k}\right)}

מפתיחת סוגריים באגף ימין נקבל:

המקדמים של הם 1 לכל חלוקה זוגית של n ו--1 לכל חלוקה אי-זוגית של n. כלומר שווה למספר החלוקות הזוגיות של n פחות מספר החלוקות האי-זוגיות.

כדי לסיים את הוכחת המשפט נותר להראות ש-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_n\ne 0} רק כאשר n מספר מחומש, ואז הוא שווה 1 או -1 בהתאמה. לשם כך עלינו להוכיח, שלמעט במקרה המחומש, מספר החלוקות הזוגיות של מספר תמיד שווה למספר החלוקות האי-זוגיות שלו.

נגדיר פונקציה על קבוצת החלוקות הנבדלות של מספר באופן הבא: בהינתן חלוקה נבדלת, נסמן את המחובר הקטן ביותר בה ב-m. כעת:

  • אם m המחוברים הגדולים ביותר הם מספרים עוקבים, חבר לכולם 1 ומחק את m מן החלוקה.
  • אחרת, יש רק l המחוברים גדולים ביותר שהם עוקבים (l<m). החסר מהם 1 והוסף את l כמחובר.

קל לראות שפונקציה זו היא אינוולוציה, הפעלתה פעמיים מחזירה את החלוקה המקורית. כמו כן קל לראות שהפעלתה על חלוקה זוגית מחזירה חלוקה אי-זוגית ולהיפך. מכאן שמדובר בהתאמה חד-חד-ערכית ועל בין קבוצת החלוקות הזוגיות לקבוצת החלוקות האי-זוגיות של מספר נתון והן שוות, זאת למעט מקרה קצה בו הפונקציה נכשלת. למשל במקרה של 8 הפונקציה מתאימה את הזוגות:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1+2+5 \leftrightarrow 2+6, \ \ \ 1+3+4 \leftrightarrow 3+5, \ \ \ 8 \leftrightarrow 1+7}

לכן, .

ישנם שני מקרי קצה אפשריים שבהם הפונקציה נכשלת:

  1. m בעצמו הוא אחד מ-m המחוברים העוקבים הגדולים ביותר. במקרה כזה מחברים 1 ל-m ואז מחסרים אותו ולכן לא מתקבלת חלוקה של אותו מספר. החלוקה במקרה זה היא: עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m+(m+1)+\ldots+(2m-1)=p_m} . לכן עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle a_{p_{m}}=(-1)^{m}} .
  2. m הוא אחד מ-l המחוברים הגדולים ביותר ו-l+1=m. במקרה כזה מחסרים מ-m 1 ומצד שני מוסיפים את l, ולכן יש שני מחוברים זהים והחלוקה אינה נבדלת. החלוקה במקרה זה היא: . לכן עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_{p_{(1-m)}}=(-1)^{1-m}} .

כל מספר מחומש הוא מהצורה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p_m} או עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p_{1-m}} ל-m שלם חיובי ולכן ההוכחה הושלמה.

נוסחת נסיגה לפונקציית החלוקה

פונקציית החלוקה סופרת את מספר הדרכים השונות לחלק את המספר כסכום של טבעיים. אין נוסחה סגורה ישירה לחישוב .

משפט המספרים המחומשים מאפשר לחשב את באמצעות נוסחת נסיגה. אוילר הוכיח שהפונקציה היוצרת של פונקציית החלוקה היא:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty p(n)x^n = \prod_{k=1}^\infty \left(\frac {1}{1-x^k} \right)}

נסמן:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty a_n x^n=\left(\sum_{k=0}^\infty p(k)x^k \right)\cdot \left(\sum_{k=-\infty}^{\infty}\left(-1\right)^{k}x^{p_k} \right)}

אזי:

עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \sum _{n=0}^{\infty }a_{n}x^{n}=\prod _{k=1}^{\infty }\left({\frac {1}{1-x^{k}}}\right)\prod _{k=1}^{\infty }(1-x^{k})=1}

מכאן של-n חיובי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_n=0} . אולם אם נחשב אותו ישירות מן ההגדרה נקבל:

ולאחר בידוד המחובר והעברת אגפים מקבלים:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p(n)=\sum_{k\in \mathbb{Z}\setminus \{0\}} (-1)^{k-1}\cdot p(n-p_k)}

זהו סכום סופי, שכן עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p(0)=1} (סכום ריק), ולכל k שלילי .

ראו גם

This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.