משפט טורן

גרף טורן במקרה n=13, t=4

בתורת הגרפים, משפט טורן הוא משפט הקובע, בהינתן מספר קבוע של צמתים, את הגרף עם מספר הקשתות המקסימלי שאינו מכיל [[[גרף (תורת הגרפים)#תת־גרף|תת־גרף]] שלם (קליקה) מגודל נתון. את המשפט הוכיח המתמטיקאי ההונגרי פאול טורן (Paul Turán) בשנת 1941.

ביתר פירוט, המשפט קובע כי הגרף עם n צמתים שאינו מכיל קליקה ומספר קשתותיו הוא מקסימלי הוא גרף שמחולק ל-t קבוצות זרות של צמתים מאותו הגודל (עד כמה שהדבר ניתן), ושלכל צומת יש קשת לכל צומת בקבוצה אחרת ולאף צומת בקבוצה שלה. גרף כזה נקרא גרף טורן.

הוכחת משפט טורן נחשבת להולדתה של תורת הגרפים הקיצונית, ענף של תורת הגרפים ושל קומבינטוריקה קיצונית שקרוב לתורת רמזי. הענף חוקר את הגרפים הקטנים והגדולים ביותר שמקיימים תכונות כלשהן.

רקע והגדרה פורמלית

גרף טורן הוא גרף עם n צמתים שמחולק ל-t קבוצות זרות של צמתים. מתוכן יש עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ n \text{ mod } t} קבוצות של עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \ \lceil {\tfrac {n}{t}}\rceil } צמתים ובשאר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ t-(n\text{ mod }t)} הקבוצות יש צמתים (לפשר הסימונים ראו חשבון מודולרי ופונקציית הערך השלם). כלומר הקבוצות שוות בגודלן ככל הניתן (ההפרשים במספר הצמתים ביניהן הוא לכל היותר 1). במקרה בו t מחלק את n מתקבל המקרה הפשוט ביותר - בכל t הקבוצות יש עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \tfrac nt} צמתים בדיוק. בגרף טורן כל שני צמתים מקבוצות שונות מחוברים בקשת, וכל שני צמתים מאותה קבוצה אינם מחוברים בקשת.

משפט טורן קובע כי מבין כל הגרפים עם n צמתים שאינם מכילים קליקה , ל- יש את מספר הקשתות הגדול ביותר.

קל לחשב את מספר הקשתות ב-. למען הפשטות נעסוק במקרה בו t מחלק את n. בין כל שתי קבוצות יש עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \tfrac nt\cdot \tfrac nt = \tfrac{n^2}{t^2}} קשתות (לפי עקרון הכפל, כי לכל אחד מבין עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \tfrac nt} הצמתים בקבוצה הראשונה יש קשת לכל אחד מבין עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \tfrac nt} הצמתים בקבוצה השנייה). ובסך הכל ישנם זוגות של קבוצות (ראו מקדם בינומי ומספר משולשי). ואין אף קשת נוספת בגרף. לכן מספר הקשתות הכולל ב- כאשר t מחלק את n הוא:

לכן משפט טורן קובע שזהו חסם עליון על מספר הקשתות המקסימלי בגרף עם n צמתים שאינו מכיל קליקה (תקף גם כאשר t אינו מחלק את n). לשם השוואה, בהיעדר הגבלה על גודל הקליקה המותרת, הגרף המקסימלי הוא הגרף השלם שלו קשתות.

הוכחות

ידועות הוכחות רבות למשפט טורן. הספר Proofs from THE BOOK, שמאגד הוכחות יפות, מביא חמש הוכחות שונות למשפט.

הוכחה באינדוקציה

ההוכחה המקורית של טורן הראתה שמספר הקשתות של גרף טורן אכן חוסם את מספר הקשתות האפשרי תחת התנאי הנתון. ההוכחה נעשית באינדוקציה על n לכל t קבוע.

נסמן ב- את גרף עם n צמתים ועם מספר הקשתות מקסימלי שמקיים את התנאי (קיים כזה כי מספר הקשתות חסום על ידי המקרה השלם). אם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ n\le t} אז עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ G_n = K_n} (כי בכל מקרה אי אפשר להכיל קליקה עם יותר צמתים מבגרף עצמו). ואז מספר הקשתות מקיים:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \frac{n(n-1)}2 = \left(1-\frac1n\right)\frac{n^2}2 \le \left(1-\frac1t\right)\frac{n^2}2}

ולכן המשפט נכון לכל n כזה (כולל n=1 שהוא בסיס האינדוקציה). עתה נניח כי . מכיל את עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ K_t} , אחרת ניתן להוסיף לו קשת בלי לקבל את בסתירה למקסימליות שלו. נחלק את הצמתים של לשתי קבוצות זרות, עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ G_1} שמכילה את צמתי הקליק עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ K_t} ו- שמכילה את שאר הצמתים בגרף. ב-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ G_1} יש קשתות. ב- יש צמתים, ולכן לפי הנחת האינדוקציה יש בה לכל היותר קשתות. בין כל צומת ב- לבין קבוצת הצמתים ב-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ G_1} יש לכל היותר קשתות. אחרת הם יוצרים יחדיו קליקה בניגוד לתנאי. כלומר בין עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ G_1} ל- יש לכל היותר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ (n-t)(t-1)} קשתות. נחבר הכל יחדיו כדי לקבל חסם על מספר הקשתות ב-:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \frac{t(t-1)}2 + \left(1-\frac1t\right)\frac{(n-t)^2}2 + (n-t)(t-1) = \left(1-\frac1t\right)\frac{n^2}2}

כנדרש.

הוכחה ישירה

להלן הוכחה ישירה כי גרף עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ G} עם n צמתים ועם מספר הקשתות מקסימלי שמקיים את התנאי הוא בהכרח גרף טורן.

נוכיח כי היחס "אין קשת בין עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ u} ל-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ v} " הוא יחס שקילות בין הצמתים בגרף:

  • רפלקסיביות: לעולם אין קשת בין צומת לעצמו.
  • סימטריות: אם אין קשת בין עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ u} ל-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ v} אז אין קשת בין עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ v} ל-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ u} .
  • טרנזיטיביות: נניח בשלילה כי היחס אינו טרנזיטיבי. כלומר קיימים צמתים כך שאין קשתות ו-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ (v,w)} , אבל ישנה קשת עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ (u,w)} . נסמן ב- את הדרגה של עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ v} . נפצל לשלושה מקרים:
    • - נמחק את הצומת עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ v} מהגרף ונחליפו בצומת עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ u'} שהוא העתק של הצומת עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ u} (מחובר לאותם צמתים). מצד אחד לא נוצרה קליקה גדולה יותר, כי לכל קליקה ש-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ u'} חבר בה, יש קליקה מגודל זהה ש-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ u} חבר בה, ומצד שני הגדלנו את מספר הקשתות בסתירה למקסימליות של עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ G} .
    • עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ d(w)>d(v)} - אנלוגי למקרה הקודם.
    • - נמחק את עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ u} ו-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ w} שיחדיו מחוברים אליהם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ d(u)+d(w)-1} קשתות (פחות אחד, כי הקשת ביניהם נספרת פעמיים). ונחליפם בשני עותקים של עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ v} . כמו קודם, לא נוצרות קליקות גדולות יותר. בסך הכל מספר הקשתות גדל ב-עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \ 2d(v)-(d(u)+d(w)-1)\geq 1} בסתירה למקסימליות של עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ G} .

הוכחנו כי "אין קשת בין עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ u} ל-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ v} " הוא יחס שקילות בין צמתי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ G} . לכן צמתי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ G} מתחלקים למחלקות שקילות, כך שבין כל שני צמתים יש קשת אם ורק אם הם ממחלקות שקילות שונות. מספר מחלקות השקילות קטן מ-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ t+1} , אחרת נוכל לבחור נציג אחד מכל מחלקת שקילות ונקבל קליקה בניגוד לתנאי. מצד שני, עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ G} בהכרח מכיל קליקה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ K_t} , אחרת ניתן להוסיף לו קשת בלי לקבל את בסתירה למקסימליות שלו. צמתים שונים בקליקה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ K_t} חייבים להיות ממחלקות שקילות שונות, כי יש ביניהם קשת, ומכאן שיש בדיוק מחלקות שונות.

עד כה קיבלנו שצמתי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ G} מחולקים ל- מחלקות זרות, כך שכל צומת מקושר לכל צומת מקבוצה אחרת ולאף צומת מהקבוצה שלו. כדי להוכיח כי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ G} גרף טורן נותר רק להראות שכל המחלקות כמעט באותו הגודל (ההפרש ביניהן הוא לכל היותר 1). נשים לב כי לכל מחלקה ולכל צומת מתקיים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ d(v) = n-|A|} (v מקושר לכל הצמתים שלא ב-A). נניח בשלילה כי ישנה מחלקה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ A_1} שיש בה לפחות שני צמתים יותר מבמחלקה אחרת עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ A_2} . נמחק צומת מ-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ v} מ-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ A_1} ונוסיף צומת ב-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ v'} ל-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ A_2} . מספר הקשתות שיתווספו הוא: , בסתירה למקסימליות של עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ G} .

מכאן ש-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ G} הוא בהכרח גרף טורן.

המקרה t=2

משפט טורן למקרה הפרטי t=2 ידוע עוד משנת 1907 ושמו משפט מאנטל. המשפט קובע שהגרף המקסימלי מגודל n שאינו מכיל משולשים (קליקה ) הוא גרף דו-צדדי שבכל צד מופיעים חצי מהצמתים (אם n אי-זוגי, בצד אחד יש אחד יותר). וכל צומת מקושר לכל הצמתים מהצד השני (זהו ). מספר הקשתות במקרה כזה יהיה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lfloor \tfrac{n^2}4 \rfloor} , בערך חצי ממספר הקשתות האפשריות ללא הגבלת משולשים.

הכללה של משפט מאנטל אומרת שכל גרף עם n צמתים ולפחות קשתות הוא או גרף טורן , או שהוא מכיל מעגל מכל אורך שהוא עד n (ולא רק משולש).

קישורים חיצוניים

הערך באדיבות ויקיפדיה העברית, קרדיט,
רישיון cc-by-sa 3.0
This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.