פונקציה סינגולרית

באנליזה מתמטית, פונקציה סינוגלריית היא פונקציה ממשית רציפה בעלת השתנות חסומה ולא קבועה המוגדרת בקטע, ושנגזרתה מתאפסת כמעט בכל מקום.

ידוע שפונקציה שנגזרתה מתאפסת בכל מקום היא פונקציה קבועה. הפונקציות הסינגולריות מתקבלות כאשר מחלישים מעט את התנאי, ומאפשרים לנגזרת שלא להתאפס (ואפילו לא להיות מוגדרת) בחלק מהנקודות, כל עוד קבוצת הנקודות שבה הנגזרת לא מתאפסת היא זניחה (קבוצה ממידה אפס).

במקורות מסוימים בוחרים לדרוש שהפונקציה גם לא יורדת. יש גם מקורות שלא דורשים שהפונקציה תהיה רציפה.

דוגמאות

  • פונקציית קנטור – זוהי פונקציה רציפה ולא יורדת בקטע היחידה שקבועה בכל קטע שמוסר בבנייה של קבוצת קנטור ולכן היא סינגולרית.
  • הפונקציה הסינגולרית של לבג – מטילים אינסוף פעמים מטבע לא הוגן שההסתברות שייצא עץ היא עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle p\neq {\tfrac {1}{2}}} וההסתברות שייצא פלי היא עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1-p} . מגדירים מספר ממשי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X\in[0,1]} כך שהספרה הבינארית ה-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n} -ית שלו היא 1 אם בהטלה ה-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n} יצא עץ, ו-0 אם בהטלה ה-n יצא פלי. פונקציית ההצטברות של המשתנה המקרי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X}  : עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle L_{p}(t)=P(X\leq t)} היא הפונקציה הסינגולרית של לבג עם הפרמטר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} . זוהי פונקציה עולה ממש ורציפה שלמרות זאת נגזרתה מתאפסת כב"מ.
  • פונקציית סימן השאלה של מינקובסקי – פונקציה המוגדרת לפי עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle {\text{?}}(x)=a_{0}+2\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{2^{a_{1}+\cdots +a_{n}}}}} כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x=[a_0;a_1,a_2,\ldots]} היא ההצגה של עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x} כשבר משולב (מגדירים באופן אנלוגי לשבר משולב סופי). הפונקציה עולה ממש ובעלת מספר תכונות מעניינות. למשל היא ממפה שורשים של משוואה ממעלה שנייה למספרים רציונליים ומקיימת משוואות פונקציונליות מעניינות.

תכונות

אינטגרל לבג אינו מושפע מקבוצות ממידה אפס, ולכן לצורכי אינטגרציה של הנגזרת ניתן להניח שהנגזרת של פונקציה סינגולרית מוגדרת בכל מקום כפונקציית האפס.

פונקציות סינגולריות אינן אינטגרל לא-מסוים של הנגזרת שלהן (בניגוד לקביעה של נוסחת ניוטון-לייבניץ העוסקת בפונקציות גזירות בכל מקום). מכיוון שפונקציה סינגולרית אינה קבועה קיימות נקודות עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a<b} בתחומה עבורן עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(a)\ne f(b)} , ולכן:

זאת מכיוון שפונקציה סינגולרית אמנם רציפה, אך אינה רציפה בהחלט בקטע.[1] ידוע שפונקציה היא אינטגרל לא-מסוים של הנגזרת שלה בקטע אם ורק אם היא רציפה בהחלט בקטע. כל אינטגרל לא-מסוים הוא רציף בהחלט, ולכן פונקציה סינגולרית אינה אינטגרל מסוים של אף פונקציה.

פירוק לבג

לכל פונקציה רציפה בעלת השתנות חסומה בקטע עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle [a,b]} יש פירוק מהצורה כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_1} רציפה בהחלט ו-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_2} סינגולרית או קבועה. הפירוק יחיד עד כדי חיבור קבוע לרכיב אחד וחיסורו מהרכיב השני. אפשר גם לדרוש כי עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle f(a)=f_{1}(a)} ואז הפירוק יחיד לגמרי (ו-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_2} סינגולרית או זהותית 0). משפט זה הוכח על ידי אנרי לבג ב-1904. בהסתמך על התכונות הידועות של פונקציות רציפות בהחלט ההוכחה פשוטה:

נגדיר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_1(x)=\int\limits_a^xf'd\lambda+f(a)} (פונקציה בעלת השתנות חסומה היא גזירה כב"מ ולכן הביטוי מוגדר היטב). כל אינטגרל לא-מסוים הוא רציף בהחלט ולכן עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_1} רציפה בהחלט (ובפרט בעלת השתנות חסומה). פונקציה רציפה בהחלט היא אינטגרל לא-מסוים של הנגזרת שלה ולכן עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_1'=f'} כב"מ. נגדיר . זו פונקציה רציפה בעלת השתנות חסומה (כהפרש פונקציות רציפות בעלות השתנות חסומה) ומתקיים עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle f_{2}'=f'-f_{1}'=0} כב"מ, ולכן עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_2} סינגולרית או קבועה.

נראה שהפירוק יחיד. נניח שגם פירוק של ומתקיים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(a)=g_1(a)} . אז מתקיים כב"מ:

אולם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_1-g_1} רציפה בהחלט ולכן אינה סינגולרית. מכאן שהיא קבועה. נשים לב כי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (f_1-g_1)(a)=f(a)-f(a)=0} ולכן עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_1-g_1} פונקציית האפס. קיבלנו כי עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle f_{1}=g_{1},f_{2}=g_{2}} כנדרש.

אם מתירים לפונקציה סינגולרית קבוצה בת מנייה של נקודות אי-רציפות, אז לכל פונקציה בעלת השתנות חסומה (לא בהכרח רציפה) יש פירוק לבג. ההוכחה זהה, בתוספת העובדה שקבוצת נקודות האי-רציפות של פונקציה בעלת השתנות חסומה היא בת-מנייה, והיא גזירה כב"מ.

לקריאה נוספת

קישורים חיצוניים

הערות שוליים

  1. פונקציה רציפה בהחלט אם לכל קיים כך שלכל אוסף סופי של קטעים זרים בזוגות בתחום עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (x_1,y_1),\ldots,(x_n,y_n)} המקיימים מתקיים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^n\bigl|f(x_i)-f(y_i)\bigr|<\varepsilon} .
This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.