קדם-מידה
![]() בערך זה |
בתורת המידה, קדם-מידה (אנגלית: Pre-measure) היא פונקציה שהיא "כמעט" פונקציית מידה, במובן זה שמשפחת הקבוצות שהיא מודדת אינה מהווה סיגמא-אלגברה.
חשיבותה של קדם-מידה היא שכאשר היא מוגדרת על משפחת קבוצות המקיימת תכונות מסוימות, אז היא יכולה להתרחב לכדי פונקציית מידה על סיגמא-אלגברה הנוצרת על ידי משפחת הקבוצות הזו, לעיתים אף באופן יחיד. תכונה חשובה זו מכונה משפט ההרחבה, שהינו בעל שתי גרסאות: גרסת קרתאודורי עבור קדם-מידה המוגדרת על חוג למחצה של קבוצות, וגרסת האן-קולמוגורוב עבור קדם-מידה המוגדרת על אלגברה של קבוצות.
שיטה זו של בניית מידה על ידי בניית קדם-מידה היא חשובה ויסודית בתורת המידה, וכך למשל יש לה תפקיד מרכזי בבניית מידת לבג על שדה המספרים הממשיים.
הגדרה
תהי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X} קבוצה, ותהי אלגברה של קבוצות או חוג למחצה של קבוצות מעל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X} .
פונקציה עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \mu _{0}:{\mathcal {S}}\to \mathbb {R} _{+}} נקראת קדם מידה, אם היא מקיימת את שתי התכונות הבאות:
- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mu_0(\varnothing)=0}
- אם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A=A_1\cup A_2\cup\cdots} איחוד סופי או בן-מניה של קבוצות זרות בזוגות מתוך עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathcal{S}} , המקיים גם כי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A\in\mathcal{S}} , אז
הסיבה לסימון היא כי קדם-מידה מיועדת להפוך למידה, כפי שמראה משפט ההרחבה, אותה מסמנים בדרך כלל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mu} .
משפט ההרחבה
נסמן ב-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sigma(\mathcal S)} את הסיגמא-אלגברה הנוצרת על ידי אלגברה של קבוצות או חוג למחצה של קבוצות . לכל קדם-מידה עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \mu _{0}:{\mathcal {S}}\to \mathbb {R} _{+}} קיימת מידה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mu:\sigma(\mathcal S)\to\R_+} המרחיבה את . כלומר לכל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A\in\mathcal S} מתקיים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mu(A)=\mu_0(A)} .
כמו כן, במצב בו היא סיגמא-סופית,[1] אז עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mu} יחידה. במצב זה, כמובן גם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mu} היא סיגמא-סופית.
ניתן להבחין כי אין כל הבדל בין אם קדם המידה מוגדרת על חוג למחצה של קבוצות או על חוג של קבוצות הנוצר על-ידה, שכן חוג של קבוצות הנוצר על ידי חוג למחצה של קבוצות הוא בדיוק אוסף כל האיחודים הסופיים של קבוצות זרות בזוגות מהחוג למחצה. לכן מאדיטיביות של קדם-מידה, היא מתרחבת באופן יחיד לכדי קדם-מידה על החוג הנוצר.
הגרסה של משפט ההרחבה עבור חוג למחצה של קבוצות נקראת משפט ההרחבה של קרתיאודורי על-שם המתמטיקאי היווני-גרמני קונסטנטין קרתיאודורי. הגרסה של משפט ההרחבה עבור אלגברה של קבוצות נקראת משפט ההרחבה של האן-קולמוגורוב, על-שמם של המתמטיקאי האוסטרי הנס האן והמתמטיקאי הרוסי אנדריי קולמוגורוב.
אי־היחידות של ההרחבה
כאמור במשפט, היחידות מובטחת רק כאשר המרחב הוא סיגמא-סופי ביחס לקדם המידה הנתונה. כאשר דרישה זו לא מתקיימת, אפילו אם המרחב כן סיגמא-סופי ביחס למידה המרחיבה, היחידות אינה מובטחת. להלן דוגמה לכך.
נתבונן במרחב עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X=\Q\cap[0,1]} , ותהי אלגברת קבוצות הנוצרת על ידי הקטעים החצי-פתוחים במרחב, מהצורה .
נתבונן בקדם-מידה טריוויאלית על המקיימת לכל קטע. כמו כן נגדיר על הסיגמא-אלגברה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sigma(\mathcal S)} מידה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mu(A)=|A|} ועוד מידה עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \nu (A)=2|A|} , כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |A|} גודל הקבוצה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A} , והוא עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty} בכל מצב בו הקבוצה אינה סופית.
אלו שתי מידות המקבלות ערכים שונים על כל קבוצה סופית של עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sigma(\mathcal S)} (יש קבוצות סופיות בסיגמא-אלגברה זו), וכמו כן ברור ששתיהן מרחיבות את הקדם-מידה , שכן כל קטע במרחב מכיל אינסוף איברים, ולכן עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mu\bigl([a,b)\bigr)=\nu\bigl([a,b)\bigr)=\infty} .
בניית מידת לבג
ערך מורחב – מידת לבג
היישום החשוב ביותר של משפט ההרחבה הוא בבניית מידת לבג על המספרים הממשיים. בבנייה זו מתחילים מהחוג למחצה או האלגברה הנוצרים על ידי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathcal S=\{(a,b]:a<b\}} , כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle b} יכול להיות גם אינסופי, ומגדירים עליו קדם-מידה להיות הנפח, כלומר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mu_0\bigl((a,b]\bigr)=b-a} . כאשר מדובר בקטע אינסופי, ערכה של הקדם-מידה יהיה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty} . ממשפט ההרחבה נובע שקיימת מידה על עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sigma(\mathcal S)} המרחיבה את . מידה זו מכונה "מידת בורל".
מידת לבג עצמה מתקבלת על ידי עוד הרחבה של מידת בורל, המוגדרת על סיגמא-אלגברה גדולה יותר המכילה את עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sigma(\mathcal S)} .
כפי שנובע מהחלק הנוסף של משפט ההרחבה, היות שהמספרים הממשיים מהווים מרחב מדיד סיגמא-סופי ביחס לקדם-מידת הנפח, הרי שמידת לבג היא המידה היחידה על סיגמא-אלגברת בורל, המקיימת את התכונה האינטואיטיבית שמידתו של כל קטע עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (a,b]} היא האורך שלו, .
לקריאה נוספת
- Real Analysis, H. L. Royden, 1963, 219-224
קישורים חיצוניים
- משפט ההרחבה של האן-קולמוגורוב, באתר PlanetMath
- משפט ההרחבה של קרתאודורי באתר PlanetMath
- Outer measures, pre-measures, and product measures בבלוג "What's new"
- An alternate approach to the Carathéodory extension theorem בבלוג "What's new"
הערות שוליים
- ↑ כלומר, ניתן להציג את עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X} כאיחוד בן-מניה של קבוצות מתוך , שקדם המידה של כל אחת מהן היא סופית.

רישיון cc-by-sa 3.0