פאון ארכימדי

בגאומטריית המרחב, פאון ארכימדי הוא פאון קמור משוכלל למחצה, שאינו מנסרה או אנטי-מנסרה, ושלא כמו בפאונים האפלטוניים, לא כל פאותיו חופפות. בפרט, כל הפאות של פאון ארכימדי חופפות לאחד משני מצולעים משוכללים או יותר, אשר כולם בעלי אותו אורך צלע. כמו כן, כל הקודקודים זהים, כלומר, כל הפאות הנפגשות בקודקוד אחד חופפות לפאות הנפגשות בכל קודקוד אחר. את הפאונים הארכימדיים אפשר לבנות מן הפאונים האפלטוניים באמצעות בניות ויטהוף.

מקור השם

הפאונים הארכימדיים נקראים על שם ארכימדס, שעסק בהם בספר שכל עותקיו אבדו. בתקופת הרנסאנס, אמנים ומתמטיקאים העריכו "צורות טהורות", וגילו מחדש את הפאונים הללו. החיפוש הושלם בסביבות 1619, כאשר יוהאנס קפלר הגדיר את המנסרות, אנטי-מנסרות והגופים הבלתי-קמורים הידועים בשם פאוני קפלר-פוינסוט.

מיון

יש שלושה-עשר פאונים ארכימדיים, מהם שניים בעלי כיווניות ימנית או שמאלית, וביחד 15 פאונים שונים (עד כדי דמיון במרחב). פאון ארכימדי מאופיין על ידי תבנית הקודקודים, המכתיבה אלו מצולעים נפגשים בכל קודקוד. לדוגמה, בפאון שתבניתו 4.6.8 נפגשים בכל קודקוד ריבוע, משושה משוכלל, ומתומן משוכלל.

שם
(תבנית קודקודים)
דמות שקופה דמות אטומה פריסה פאות מקצועות קודקודים טיפוס חבורת הסימטריה
ארבעון קטום או טטרהדרון קטום

(3.6.6)


(אנימציה)
84 משולשים

4 משושים

18 12 Td
קובוקטהדרון

(3.4.3.4)


(אנימציה)
 14 

8 משולשים
6 ריבועים

24 12 Oh
קובייה קטומה או הקסהדרון קטום

(3.8.8)


(אנימציה)
14 8 משולשים

6 מתומנים

36 24 Oh
תמניון קטום או אוקטהדרון קטום

(4.6.6)


(אנימציה)
14 6 ריבועים

8 משושים

36 24 Oh
רומביקובוקטהדרון


או רומביקובוקטהדרון קטן
(3.4.4.4)


(אנימציה)
268 משולשים
18 ריבועים
4824 Oh
קובוקטהדרון קטום
או רומביקובוקטהדרון גדול

(4.6.8)


(אנימציה)
קובץ:Truncated cuboctahedron flat.svg 26 12 ריבועים

8 משושים
6 מתומנים

72 48 Oh
קובייה מסותתת

או הקסהדרון מסותת
או קובוקטהדרון מסותת
(2 צורות כיווניות)
(3.3.3.3.4)

קובץ:Snubhexahedronccw.jpg
(אנימציה)

(אנימציה)
38 32 משולשים

6 ריבועים

60 24 O
איקוסידודקהדרון

(3.5.3.5)


(אנימציה)
3220 משולשים

12 מחומשים

6030 Ih
דודקהדרון קטום

(3.10.10)

קובץ:Truncateddodecahedron.jpg
(אנימציה)
קובץ:Truncated dodecahedron.png 32 20 משולשים

12 מעושרים

90 60 Ih
איקוסהדרון קטום

או כדור באקי
או 'כדורגל'
(5.6.6)


(אנימציה)

קובץ:Truncated icosahedron flat-2.svg

3212 מחומשים

20 משושים

90 60 Ih
רומביקוסידודקהדרון
או רומביקוסידודקהדרון קטן

(3.4.5.4)


(אנימציה)
62

20 משולשים
30 ריבועים
12 מחומשים

120 60 Ih
איקוסידודקהדרון קטום
או רומביקוסידודקהדרון גדול

(4.6.10)


(אנימציה)
62 30 ריבועים

20 משושים
12 מעושרים

180 120 Ih
דודקהדרון מסותת
או איקוסידודקהדרון מסותת
(2 צורות כיווניות)

(3.3.3.3.5)


(אנימציה)

(אנימציה)
קובץ:Snub dodecahedron ccw.png 9280 משולשים
12 מחומשים
150 60 I

הקוביה המסותתת והדודקהדרון המסותת הם כיווניים, משום שיש להם גרסה ימנית (בלטינית - levomorph) וגרסה שמאלית (dectromorph). צורות אלה הן תמונות מראה זו של זו. זוגות בעלי תכונה זו נקראים (למשל בכימיה) אננטימורפיים.

הפאונים הדואליים לפאונים הארכימדיים נקראים פאוני קטלן. יחד עם הדו-פירמידות והטרפזוהדרונים, אלו הם הפאונים שכל הפאות שלהם חופפות (גם אם אינן משוכללות).

קובץ:Archimedean and platonic solids png.png

מקורות

  • Robert Williams, The Geometrical Foundation of Natural Structure: A Source Book of Design, 1979

ראו גם

קישורים חיצוניים


This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.