התפלגות בינומית שלילית

התפלגות בינומית שלילית, הקו הכתום מייצג את התוחלת ושווה ל-10 בכל האיורים, הקו הירוק מראה את סטיית התקן
בתורת ההסתברות, התפלגות בינומית שלילית היא התפלגות בדידה המתארת את מספר ההצלחות בסדרת ניסויי ברנולי בלתי תלויים לפני שמתרחשים מספר קבוע נתון מראש, r, של כשלונות. לדוגמה, אם נטיל מטבע שוב ושוב, נגדיר כישלון כעץ ונעצור כאשר נקבל עץ בפעם השלישית (אם סימנו מראש r=3 ), אז מספר ההצלחות (קבלת "פלי") שנראה יתפלג באופן בינומי שלילי. אם ההסתברות להצלחה בכל ניסוי היא p וההסתברות לכישלון היא (p-1) אז המספר האקראי של ההצלחות שנראה, X, יהיה בעל התפלגות בינומית שלילית עם הפרמטרים (r,p) ונסמן זאת כך:
משתנה מקרי X מתפלג נקודתית:
כאשר הביטוי בסוגריים הוא המקדם הבינומי ושווה ל:
התפלגויות | ||
---|---|---|
התפלגויות בדידות כלליות | אחידה בדידה • בינומית • מולטינומית • בינומית שלילית • ברנולי • גאומטרית • היפרגאומטרית • היפרגאומטרית שלילית • מנוונת • פואסון | ![]() |
התפלגויות רציפות כלליות | אחידה רציפה • בטא • גמא • לוג-נורמלית • מעריכית (אקספוננציאלית) • נורמלית (גאוסית) • לפלס • משולשת • פארטו • ריילי • קושי • כי בריבוע | |
התפלגויות בפיזיקה סטטיסטית | בולצמן • בוז-איינשטיין • מקסוול-בולצמן • פרמי-דיראק • זטא | |
התפלגויות נוספות | התפלגות t • התפלגות F • ארלנג • וייבול • לוגיסטית | |
סוגי התפלגויות | בדידה • רציפה • מותנית • נורמלית מוכללת • זנב עבה • לא פריקה • משותפת |
This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.