התפלגות אחידה רציפה

התפלגות אחידה (רציפה)
פונקציית צפיפות ההסתברות
פונקציית ההסתברות המצטברת
מאפיינים
פרמטרים (יכול להיות גם איחוד של מספר קטעים)
תומך עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x\in (a,b)}
פונקציית צפיפות הסתברות
(pdf)
עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(x) = \begin{cases} \frac{1}{b-a}, & x\in (a,b) \\ 0, & \mbox{otherwise } \end{cases}}
פונקציית ההסתברות המצטברת
(cdf)
עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ F_X(x) =\begin{cases} 0, & x\le a\\ \frac{x-a}{b-a}, & a\le x\le b\\ 1, & b\le x \end{cases}}
תוחלת עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{a+b}{2}}
סטיית תקן עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{b-a}{\sqrt{12}}}
חציון עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{a+b}{2}}
ערך שכיח (כל ערך בין a לבין b)
שונות עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{(b-a)^2}{12}}
אנטרופיה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \ln(b-a)}
פונקציה יוצרת מומנטים
(mgf)
צידוד עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ 0}
גבנוניות עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle -\frac{6}{5}}

התפלגות אחידה רציפהאנגלית: Continuous Uniform distribution) היא התפלגות רציפה בה לכל הקטעים בעלי אותו אורך, הנמצאים בתומך שלה, הם בעלי הסתברות שווה.

תומך ההתפלגות האחידה הרציפה הוא קטע, ההתפלגות נתונה בעזרת שני פרמטרים ו- , ומציינים את קצוות הקטע המהווה התומך, ותסומן לרוב על ידי .

מאפיינים סטטיסטיים

מאפיינים מגדירים

בהינתן משתנה מקרי עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle X\sim U(a,b)} , פונקציית צפיפות ההסתברות שלו היא:

פונקציית ההתפלגות המצטברת של המשתנה המקרי היא:

מומנטים ופונקציות יוצרות

תוחלתו ושונותו של המתשנה המקרי נתונות על ידי הנוסחאות:

הנוסחא למומנט מסדר של המשתנה המקרי היא:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{E}X^n=\frac{b^n-a^n}{(n+1)(b-a)} }

המומנט הממרוכז ה--י הוא:

בפרט ניתן לראות כי המומנטים הממורכזים מסדר אי-זוגי מתאפסים. עובדה זו נובעת בקלות מהיות סימטרי סביב הממוצע.

הפונקציה יוצרת המומנטים של המשתנה המקרי נתונה על ידי:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle M_X(t) = \mathbb{E}exp(tX) = \begin{cases} \frac{e^{tb}-e^{ta}}{t(b - a)} & \mathrm{for}\ t\ne 0 \\[8pt] 1 & \mathrm{for}\ x<a\ \mathrm{or}\ x>b \end{cases} }

בדומה, הפונקציה האופיינית של המשתנה המקרי היא:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \phi_X(t) = \mathbb{E}exp(itX) = \begin{cases} \frac{e^{itb}-e^{ita}}{it(b - a)} & \mathrm{for}\ t\ne 0 \\[8pt] 1 & \mathrm{for}\ x<a\ \mathrm{or}\ x>b \end{cases} }

קשרים להתפלגויות אחרות

  • מתוך משתנה מקרי אחיד ניתן לייצר כל התפלגות – עקרון דגימת ההעתקה ההפוכה (באנגלית: Inverse transform sampling) גורס שאם היא פונקציית התפלגות, ומגדירים את הפונקציה ההופכית המוכללת של על ידי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F^{-1}(t)=\inf\{x: F(x)\ge t\}} , אז למשתנה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F^{-1}(U)} יש פונקציית התפלגות השווה ל־ . שימוש בשיטה זו יכול להיות קשה במקרים בהם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F^{-1}} קשה לחישוב.
  • למשל, אם אז המשתנה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lambda^{-1}\cdot \ln(\frac{1}{U})} מתפלג מעריכית עם פרמטר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lambda} .
  • אם אז המשתנה מתפלג בטאעיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle U^{n}\sim Beta(1/n,1)} .
  • התפלגות משולשת היא התפלגות של סכום של שני משתנים מקריים רציפים בלתי תלויים המתפלגים אחיד.
  • התפלגות אירווין-הול היא ההתפלגות של סכום של משתנים מקריים בלתי־תלויים, כל אחד מתפלג .
  • אם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle U,V\sim U(0,1)} , אז גם למשתנה המקרי יש התפלגות משולשת.
  • ניתן להשתמש בטרנספורמציית בוקס-מילר כדי לקבל משתנים אקראיים נורמליים מתוך משתנים אקראיים רציפים המתפלגים אחיד.

שימושים

סטטיסטיקה תאורטית

בסטטיסטיקה, כשמשתמשים במבחן ערך-p לבדיקת השערת אפס פשוטה, וההתפלגות של המבחן הסטטיסטי רציפה, אז ערך ה-p מתפלג אחיד בין 0 ל־1 כאשר השערת האפס נכונה.

תכנות

לשפות תכנות רבות יש את היכולת לייצר מספרים פסאודו־אקראיים שמתפלגים אחיד לפי התפלגות אחידה סטנדרטית, וזאת תוך שימוש במחולל מספרים פסאודו-אקראיים. שימוש בעקרון דגימת ההעתקה ההפוכה מאפשר כך למתכנת לקבל ערך אקראי המתפלג כרצונו. כך למשל יכול מתכנת לסמלץ פעולות כמו הטלת מטבע או קובייה.

חישוב נומרי ושיטת מונטה־קרלו

נניח שנתונה לנו פונקציה אינטגרבילית , ורוצים לחשב את האינטגרל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{a}^{b} f(x)dx} . אם לפונקציה יש פונקציה קדומה ידועה, ניתן לחשב את האינטגרל תוך שימוש במשפט היסודי של החשבון הדיפרנציאלי והאינטגרלי.

כשאין זה המקרה, ניתן לחשב את האינטגרל על ידי האבחנה הבאה – האינטגרל שווה ל־עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (b-a)\mathbb{E}(f(U))} כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle U\sim U(a,b)} . את ערך התוחלת ניתן לקרב תוך שימוש בחוק המספרים הגדולים – מגרילים סדרת משתנים מקריים בלתי תלויים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle U_{1},...,U_{N}\sim U(a,b)} ומחשבים את הממוצע האמפירי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle M=\frac{1}{N}\sum_{i=1}^{N}f(U_{i})} . אי-שוויון צ'בישב גורר כי

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}\{|M-\mathbb{E}f(U)|\ge t\} \le \frac{Var(M)}{t^2}=\frac{Var(f(U))}{Nt^2} }

בשיטה זו נהוג להשתמש בסימולציה של מערכות מורכבות בפיזיקה,כימיה והנדסה. למשל, כאשר יש צורך להבין מהי ההסתברות שמערכת הנדסית תכשל, ניתן להריץ סימולציה של המערכת מספר רב של פעמים ולראות מה יחס מספר הפעמים בה המערכת נכשלה.

שגיאות קוונטיזציה

בעיבוד אותות שגיאת קוונטיזציה היא שגיאה הנובעת מקירוב של אות אנלוגי על ידי אות דיגיטלי. עקב מספר הביטים הסופי באות הדיגיטלי, חייבת להיות שגיאה בקירוב זה – שגיאה הנובעת מעיגול או השמטה של הספרות האחרונות. כאשר עוצמת האות המקורי גדולה הרבה יותר מהביט הזניח ביותר, המתאם בין השגיאה לגודל האות המקורי קטן מאוד, וכתוצאה מכך השגיאה מתפלגת, בקירוב, בצורה אחידה.

התפלגות אחידה סטנדרטית

המקרה הפרטי המתקבל מהגבלת הפרמטרים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle b=1} , נקראת התפלגות אחידה סטנדרטית, המסומנת על ידי .

עקרון דגימת ההעתקה ההפוכה גורס כי מתוך התפלגות אחידה סטנדרטית ניתן להגיע לכל התפלגות שהיא, בהנחה ופונקציית ההתפלגות המצטברת ידועה.

ראו גם

קישורים חיצוניים

This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.