התפלגות פרמי-דיראק

התפלגות פרמי-דיראק (או סטטיסטיקת פרמי-דיראק; על שם הפיזיקאים אנריקו פרמי ופול דיראק) היא פונקציית התפלגות סטטיסטית בעזרתה ניתן לתאר תכונות של חלקיקים פרמיונים זהים חסרי אינטראקציה.
הגדרה
באופן מפורש, האכלוס הממוצע של רמת אנרגיה מסוימת במערכת של פרמיונים זהים הנמצאת בשיווי משקל תרמודינמי נתון על ידי הפונקציה הבאה:
עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n_{FD}(\epsilon) = \frac{1}{e^{(\epsilon-\mu) / k_B T} + 1} }
כאשר:
- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ n_{FD} } הוא המספר הממוצע של חלקיקים שימצאו במצב (או לחלופין ההסתברות למציאת חלקיק במצב).
- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \epsilon} היא האנרגיה של מצב זה.
- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \mu} הוא הפוטנציאל הכימי.
- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ T} היא הטמפרטורה.
- הוא קבוע בולצמן.
בעזרת פונקציה זו, ובעזרת צפיפות מצבים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ g(\epsilon)} , ניתן לחשב תכונות תרמודינמיות שונות של המערכת. למשל, האנרגיה הממוצעת נתונה על ידי:
עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ U = \int \epsilon g(\epsilon) n_{FD}(\epsilon) d\epsilon }
פיתוח
את התפלגות פרמי-דיראק ניתן לקבל בקלות על ידי שימוש בצבר הגרנד־קנוני. במסגרת צבר זה, ההסתברות למציאת מערכת במצב i עם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ N_i } חלקיקים ואנרגיה כוללת נתונה על ידי , כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathcal{Z}=\sum_{i}e^{- \frac{(E_i-\mu N_i)}{k_BT}}} היא פונקציית החלוקה הגרנד־קנונית.
ניקח כמערכת רמת אנרגיה (חד־חלקיקית) מסוימת . אם אין אינטראקציה בין החלקיקים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ E_i = n\epsilon} כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ n=N_i } הוא מספר החלקיקים הנמצאים ברמה זו. אם מדובר בפרמיונים, בגלל עקרון האיסור של פאולי ייתכן רק עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ n=0,1} . פונקציית החלוקה במקרה זה תהיה . מכאן ניתן לקבל את מספר החלקיקים הממוצע על ידי שימוש ב־ , או על ידי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lang n \rang = -\frac{\partial\Omega}{\partial\mu}} כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Omega = -k_B T\ln\mathcal{Z} } .
תכונות ההתפלגות
- מתקיים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ n_{FD}(\epsilon) \leq 1 } . דבר זה מבטא את עקרון האיסור של פאולי – שני פרמיונים זהים לא יכולים להיות באותו מצב. בפרט המספר הממוצע של פרמיונים בכל מצב קטן (או שווה) מ־1.
- בגבול של טמפרטורה נמוכה ( עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ T \to 0} ) התפלגות פרמי־דיראק שואפת לפונקציית מדרגה, בה כל הרמות בעלות אנרגיה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \epsilon < \mu=\epsilon_F} מאוכלסות, ואילו כל הרמות בעלות אנרגיה אינן מאוכלסות. האנרגיה המקסימלית של המצבים המאוכלסים מסומנת עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \epsilon_F} ונקראת אנרגיית פרמי.
קישורים חיצוניים
התפלגויות | ||
---|---|---|
התפלגויות בדידות כלליות | אחידה בדידה • בינומית • מולטינומית • בינומית שלילית • ברנולי • גאומטרית • היפרגאומטרית • היפרגאומטרית שלילית • מנוונת • פואסון | ![]() |
התפלגויות רציפות כלליות | אחידה רציפה • בטא • גמא • לוג-נורמלית • מעריכית (אקספוננציאלית) • נורמלית (גאוסית) • לפלס • משולשת • פארטו • ריילי • קושי • כי בריבוע | |
התפלגויות בפיזיקה סטטיסטית | בולצמן • בוז-איינשטיין • מקסוול-בולצמן • פרמי-דיראק • זטא | |
התפלגויות נוספות | התפלגות t • התפלגות F • ארלנג • וייבול • לוגיסטית | |
סוגי התפלגויות | בדידה • רציפה • מותנית • נורמלית מוכללת • זנב עבה • לא פריקה • משותפת |