קבוצה פורשת
באלגברה לינארית, יאמר על קבוצת וקטורים , המוכלת במרחב וקטורי , שהיא קבוצה פורשת (או קבוצת יוצרים) של , אם ורק אם כל וקטור במרחב ניתן להצגה כצירוף לינארי של וקטורים השייכים ל-.
קבוצת כל הצירופים הלינאריים של איברי קבוצת וקטורים נתונה מסומנת ב. (קיצור של המילה Span, פרישה באנגלית). ניתן להראות שקבוצה זו תמיד מקיימת את אקסיומות המרחב הווקטורי ולכן ניתן לדבר על "המרחב הנפרש על ידי הקבוצה ". בהתאם לכך, פורשת את אם ורק אם .
מעניין להתבונן גם בקבוצה "מינימלית" של וקטורים הפורשת מרחב מסוים. הכוונה ב"מינימלית" היא לכך שאם משמיטים מן הקבוצה וקטור, הקבוצה כבר אינה פורשת. ניתן להראות שאם הקבוצה אינה מינימלית, קיים בקבוצה וקטור שניתן להצגה כצירוף לינארי של האחרים, כלומר הקבוצה תלויה לינארית, ואם הקבוצה היא מינימלית, אזי היא בלתי תלויה. לפיכך, קבוצה פורשת מינימלית היא בסיס למרחב הווקטורי.
דוגמאות
- הקבוצה פורשת את קבוצת המספרים הממשיים, מפני שכל מספר ממשי הוא צירוף לינארי של שלה (כי לכל מספר ממשי קיים כך ש- ). בדומה, כל קבוצה של מספרים ממשיים (למשל , או ) פורשת את קבוצת כל המספרים הממשיים ׁ(אבל לאו דווקא פורשת מינימלית), למעט הקבוצה הריקה ויחידון האפס ().
- הקבוצה פורשת את המרחב , כי לכל , קיים כך ש- .
בהתאם לדוגמאות שלעיל נוכל לסמן:
- .
נושאים באלגברה לינארית | ||
---|---|---|
מושגי יסוד | שדה • מרחב וקטורי • משוואה לינארית • מערכת משוואות לינאריות • העתקה לינארית • מטריצה | |
וקטורים | תלות לינארית • צירוף לינארי • קבוצה פורשת • בסיס • קואורדינטות | |
מטריצות | כפל מטריצות • שחלוף • דטרמיננטה • דרגה • עקבה • מטריצה מצורפת • מטריצה משולשית • דמיון מטריצות • ערך עצמי • פולינום אופייני • מטריצה לכסינה • צורת ז'ורדן | |
העתקות | העתקה לינארית • קואורדינטות • מטריצה מייצגת • גרעין (אלגברה) • אנדומורפיזם • איזומורפיזם • העתקה אפינית • העתקה פרויקטיבית | |
מרחבי מכפלה פנימית | מכפלה סקלרית • מכפלה וקטורית • אורתוגונליות • מטריצה סימטרית • אופרטור הרמיטי • אופרטור אוניטרי • העתקה נורמלית | |
תבניות | תבנית בילינארית • תבנית סימטרית • תבנית הרמיטית • תבנית סימפלקטית • חפיפת מטריצות • משפט סילבסטר • תבנית מולטי-לינארית אנטי-סימטרית • אוריינטציה • צפיפות • טנזור |