מטריצה אורתוגונלית
באלגברה לינארית, מטריצה אורתוגונלית היא מטריצה ריבועית שרכיביה ממשיים המקיימת את התנאי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ A^t A = A A^t = I} , כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ I} היא מטריצת היחידה, ו- היא המטריצה המשוחלפת של . לכפל במטריצה כזו יש תכונה חשובה: הוא שומר על אורך של וקטורים, וגם על הזווית ביניהם.
העמודות של מטריצה אורתוגונלית מהוות בסיס אורתונורמלי למרחב הווקטורי שממדו כמספר עמודות המטריצה, עם המכפלה הפנימית הסטנדרטית.
חבורת המטריצות האורתוגונליות
אוסף המטריצות האורתוגונליות בגודל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ n\times n} מעל שדה F סגור לכפל, והוא מהווה חבורה אלגברית שמקובל לסמן ב- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ O_n(F)} . מעל שדה המספרים הממשיים, עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ O_n(\mathbb{R})} היא חבורה קומפקטית.
הדטרמיננטה של מטריצה אורתוגונלית היא או עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ -1} . המטריצות האורתוגונליות בעלות דטרמיננטה 1 נקראות "מטריצות אורתוגונליות מיוחדות", והן מרכיבות את תת-החבורה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ SO_n(F)} של עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ O_n(F)} . בשדה ממאפיין שונה מ-2, עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ SO_n(F) \triangleleft O_n(F)} היא תת-חבורה מאינדקס 2 (מעל שדה ממאפיין 2, שתי החבורות שוות). המטריצות הסקלריות האורתוגונליות הן עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \pm I} , ומגדירים את חבורות המנה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ PO_n(F) =O_n(F)/\langle-I\rangle} ו- .
המטריצה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ -I} שייכת ל- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ SO_n(F)} אם ורק אם n זוגי. לכן, כאשר n זוגי, ארבע החבורות עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ O_n, SO_n, PO_n, PSO_n} שונות זו מזו, ואילו כאשר n איזוגי, עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ O_n \cong SO_n \times \langle -I \rangle} ו- .
המקרה n=2
מעל שדה המספרים הממשיים, כוללת את מטריצות הסיבוב בכל זווית אפשרית. חבורה זו, שהיא אבלית, איזומורפית לחבורה המעגלית עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ S^1} של המספרים המרוכבים בעלי נורמה 1, וגם לחבורת המנה . ליפוף כפול של המעגל (כלומר, זיהוי הקצוות ) נותן את אותה חבורה, ולכן עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ PSO_2(\mathbb{R}) \cong SO_2(\mathbb{R})} . החבורה כוללת איבר נוסף, עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \tau = \left(\begin{array}{cc}1 & 0 \\ 0 & -1 \end{array}\right)} , המתאים לשיקוף סביב ציר ה-x, ואת כל המכפלות של בסיבובים. החבורה הזו אינה אבלית. גם כאן עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ PO_2(\mathbb{R}) \cong O_2(\mathbb{R})} .
מטריצות אוניטריות
מטריצה אורתוגונלית היא מטריצה אוניטרית מעל הממשיים. מטריצה אוניטרית עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A \in M_n(\mathbb{F}) } מקיימת: עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A^* A= I} כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A^*:=\overline{A^t}} ותכונה הנובעת מזה היא שעמודותיה ושורותיה פורשות את . הערה:
תכונות של מטריצות אוניטריות
- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A\,} מטריצה הפיכה ו-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A^{-1} = \overline{A}^T\,}
- מטריצה אוניטרית שומרת מכפלה פנימית: (כאן נעזרנו בתכונות הצמוד ההרמיטי במכפלה פנימית)
- מטריצה אוניטרית שומרת על נורמה, עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \| A x \| = \| x \|} . כתוצאה מכך, ערך מוחלט של כל ערך עצמי שלה הוא 1.
- אם A אוניטרית עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A^*\,} ו-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \overline{A}} גם הן אוניטריות
ראו גם
נושאים באלגברה לינארית | ||
---|---|---|
מושגי יסוד | שדה • מרחב וקטורי • משוואה לינארית • מערכת משוואות לינאריות • העתקה לינארית • מטריצה | |
וקטורים | תלות לינארית • צירוף לינארי • קבוצה פורשת • בסיס • קואורדינטות | |
מטריצות | כפל מטריצות • שחלוף • דטרמיננטה • דרגה • עקבה • מטריצה מצורפת • מטריצה משולשית • דמיון מטריצות • ערך עצמי • פולינום אופייני • מטריצה לכסינה • צורת ז'ורדן | |
העתקות | העתקה לינארית • קואורדינטות • מטריצה מייצגת • גרעין (אלגברה) • אנדומורפיזם • איזומורפיזם • העתקה אפינית • העתקה פרויקטיבית | |
מרחבי מכפלה פנימית | מכפלה סקלרית • מכפלה וקטורית • אורתוגונליות • מטריצה סימטרית • אופרטור הרמיטי • אופרטור אוניטרי • העתקה נורמלית | |
תבניות | תבנית בילינארית • תבנית סימטרית • תבנית הרמיטית • תבנית סימפלקטית • חפיפת מטריצות • משפט סילבסטר • תבנית מולטי-לינארית אנטי-סימטרית • אוריינטציה • צפיפות • טנזור |